光伏功率預(yù)測在風(fēng)光儲系統(tǒng)中的應(yīng)用
本文選題:光伏發(fā)電功率預(yù)測 + 組合預(yù)測; 參考:《華北電力大學(xué)》2014年碩士論文
【摘要】:光伏功率預(yù)測可以有效的避免并網(wǎng)光伏發(fā)電系統(tǒng)輸出功率間歇性和不可控性等缺點(diǎn)對電網(wǎng)的沖擊,因此對光伏發(fā)電系統(tǒng)進(jìn)行發(fā)電量預(yù)測具有十分重要的意義。本文綜述了光伏功率預(yù)測研究現(xiàn)狀和預(yù)測方法,針對光伏功率預(yù)測精度問題,提出了基于熵權(quán)法的光伏輸出功率組合預(yù)測模型和基于組合權(quán)重相似日選取方法的光伏輸出功率預(yù)測模型,并提出基于光伏功率預(yù)測結(jié)果的風(fēng)光儲系統(tǒng)平滑輸出控制策略。 首先,本文提出了基于熵權(quán)法的光伏輸出功率組合預(yù)測模型,該方法組合基于待預(yù)測日前一天功率的持續(xù)法預(yù)測模型、支持向量機(jī)預(yù)測模型和相似數(shù)據(jù)預(yù)測模型,采用熵權(quán)法確定三種模型的組合預(yù)測權(quán)重系數(shù),建立了基于熵權(quán)法的光伏輸出功率組合預(yù)測模型。Matlab仿真結(jié)果表明基于熵權(quán)法的光伏輸出功率組合預(yù)測模型提高了預(yù)測精度,對比三種單一預(yù)測模型,預(yù)測結(jié)果最大相對誤差和均方根誤差都有所減小,并且基于熵權(quán)法的光伏輸出功率組合預(yù)測模型能夠適應(yīng)天氣類型變化,在不同的天氣類型下的預(yù)測效果都較好,適合工程應(yīng)用。 其次,針對氣象條件相似天光伏輸出功率曲線具有很高的關(guān)聯(lián)度,本文提出了基于組合權(quán)重法選取相似日的光伏輸出功率預(yù)測方法。基于組合權(quán)重法的相似日選取方法,首先選擇太陽輻照度為相似變量,采用組合權(quán)重相似日選取方法確定各歷史天與待預(yù)測天相似誤差,選出相似誤差最小的3個歷史天確定為待預(yù)測日的相似天。將相似天光伏輸出功率的平均值作為預(yù)測日光伏輸出功率預(yù)測值。該預(yù)測方法的關(guān)鍵是相似天選取時各基值點(diǎn)組合權(quán)重系數(shù)的恰當(dāng)確定,本文先確定各基值點(diǎn)的主觀權(quán)重系數(shù)和客觀熵權(quán),再采用最小鑒別信息原理融合上述兩種權(quán)重系數(shù),得到組合權(quán)重系數(shù)。Matlab仿真對比表明,基于組合權(quán)重法選取相似日的光伏輸出功率預(yù)測方法能夠選出相似程度很高的相似天,提高了光伏輸出功率的預(yù)測精度。 最后,本文提出基于光伏功率預(yù)測的風(fēng)光儲系統(tǒng)平滑輸出控制策略。該方法以光伏輸出功率預(yù)測為基礎(chǔ),利用下一時刻功率預(yù)測值,估算下一時刻電池荷電狀態(tài)的變化趨勢,從而調(diào)整儲能電池充放電量,該方法能夠?qū)崿F(xiàn)系統(tǒng)輸出功率平滑控制并保持儲能電池系統(tǒng)SOC穩(wěn)定在正常范圍。采用Matlab仿真,驗證了該控制策略的有效性。
[Abstract]:Photovoltaic power prediction can effectively avoid the impact of intermittent and uncontrollable output power of grid-connected photovoltaic system, so it is of great significance to predict the power generation of photovoltaic system. In this paper, the current situation and prediction methods of photovoltaic power prediction are reviewed, aiming at the problem of photovoltaic power prediction accuracy. A combination prediction model of photovoltaic output power based on entropy weight method and a photovoltaic output power prediction model based on the method of combination weight similarity day selection are proposed, and a smooth output control strategy for wind-storage system based on PV power prediction results is proposed. First of all, this paper presents a photovoltaic output power combination prediction model based on entropy weight method, which is based on the continuous prediction model, support vector machine prediction model and similar data prediction model, which is based on the power prediction model one day before the day to be forecasted. The combined prediction weight coefficient of three models is determined by entropy weight method. The combined prediction model of photovoltaic output power based on entropy weight method is established. The simulation results of Matlab show that the combined prediction model of photovoltaic output power based on entropy weight method improves the prediction accuracy. Compared with the three single prediction models, the maximum relative error and root mean square error of the prediction results are all reduced, and the photovoltaic output power combination prediction model based on entropy weight method can adapt to the change of weather type. The prediction results of different weather types are good and suitable for engineering application. Secondly, in view of the high correlation degree of photovoltaic output power curve with similar weather conditions, this paper proposes a photovoltaic output power prediction method based on combination weight method to select similar days. Based on the combination weight method, the similar day selection method is used to select solar irradiance as a similar variable, and the similarity error between each historical day and the day to be predicted is determined by the combination weight similarity day selection method. Three historical days with the smallest similarity error are selected as the similar days to be predicted. The average value of photovoltaic output power of similar days is taken as the prediction value of photovoltaic output power. The key of this prediction method is to determine the combination weight coefficient of each base point when selecting the similar day. The subjective weight coefficient and objective entropy weight of each base point are determined first, and then the least discriminant information principle is used to fuse the above two weight coefficients. The simulation results of combined weight coefficient and Matlab show that the photovoltaic output power prediction method based on the combination weight method can select the similar days with high similarity degree and improve the precision of photovoltaic output power prediction. Finally, a smooth output control strategy based on PV power prediction is proposed. Based on the prediction of photovoltaic output power, the change trend of the charge state of the battery at the next moment is estimated by using the predicted value of the power at the next moment, and the charge and discharge quantity of the energy storage cell is adjusted. This method can realize the smooth control of the output power of the system and keep the SOC of the energy storage battery system stable in the normal range. The effectiveness of the control strategy is verified by Matlab simulation.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 匡樂紅;徐林榮;劉寶琛;;組合賦權(quán)法確定地質(zhì)災(zāi)害危險性評價指標(biāo)權(quán)重[J];地下空間與工程學(xué)報;2006年06期
2 計長安;張秀彬;趙興勇;吳浩;曾國輝;;基于模糊控制的風(fēng)光互補(bǔ)能源系統(tǒng)[J];電工技術(shù)學(xué)報;2007年10期
3 陳昌松;段善旭;殷進(jìn)軍;;基于神經(jīng)網(wǎng)絡(luò)的光伏陣列發(fā)電預(yù)測模型的設(shè)計[J];電工技術(shù)學(xué)報;2009年09期
4 鄭詩程,丁明,蘇建徽,茆美琴;戶用光伏并網(wǎng)發(fā)電系統(tǒng)的研究與設(shè)計[J];電力電子技術(shù);2005年01期
5 田光理;苑紅偉;牛德寧;;基于粗糙集理論的短時交通流組合預(yù)測研究[J];道路交通與安全;2010年02期
6 楊琦;張建華;劉自發(fā);夏澍;;風(fēng)光互補(bǔ)混合供電系統(tǒng)多目標(biāo)優(yōu)化設(shè)計[J];電力系統(tǒng)自動化;2009年17期
7 王曉蘭;葛鵬江;;基于相似日和徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的光伏陣列輸出功率預(yù)測[J];電力自動化設(shè)備;2013年01期
8 盧靜;翟海青;劉純;王曉蓉;;光伏發(fā)電功率預(yù)測統(tǒng)計方法研究[J];華東電力;2010年04期
9 劉波;郭家寶;袁智強(qiáng);陳文升;唐勇俊;;風(fēng)光儲聯(lián)合發(fā)電系統(tǒng)調(diào)度策略研究[J];華東電力;2010年12期
10 李建紅;陳國平;葛鵬江;周書亮;符一平;陳業(yè);;基于相似日理論的光伏發(fā)電系統(tǒng)輸出功率預(yù)測[J];華東電力;2012年01期
相關(guān)博士學(xué)位論文 前1條
1 王飛;并網(wǎng)型光伏電站發(fā)電功率預(yù)測方法與系統(tǒng)[D];華北電力大學(xué);2013年
,本文編號:1958312
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1958312.html