基于混合滑模變結(jié)構(gòu)的異步電機(jī)矢量控制系統(tǒng)研究
本文選題:異步電機(jī) + 矢量控制 ; 參考:《河北工程大學(xué)》2014年碩士論文
【摘要】:異步電機(jī)具有可靠性高、制造成本低、維護(hù)方便等優(yōu)點(diǎn),在交流調(diào)速領(lǐng)域廣泛應(yīng)用。但異步電機(jī)是一個(gè)強(qiáng)耦合的時(shí)變系統(tǒng),不能將勵(lì)磁電流與轉(zhuǎn)矩電流分開(kāi)控制,這使得異步電機(jī)的數(shù)學(xué)模型在調(diào)速過(guò)程中存在偏差,在控制精度較高的場(chǎng)合,調(diào)速性能不能滿足要求。 異步電動(dòng)機(jī)矢量控制可以解決交流控制系統(tǒng)中定轉(zhuǎn)子磁鏈耦合問(wèn)題,提高交流調(diào)速系統(tǒng)控制性能。但異步電動(dòng)機(jī)矢量控制控制系統(tǒng)要獲得良好的調(diào)速控制性能還需依賴于精確電機(jī)參數(shù),在電機(jī)在運(yùn)行過(guò)程中,,不可避免地會(huì)出現(xiàn)不確定性干擾以及由于溫度升高等導(dǎo)致的電機(jī)參數(shù)的變化等問(wèn)題,這些都將使調(diào)速控制系統(tǒng)控制性能下降。滑模變結(jié)構(gòu)控制對(duì)系統(tǒng)數(shù)學(xué)模型要求不高,且對(duì)電機(jī)參數(shù)變化具有很好的魯棒性。為了進(jìn)一步增強(qiáng)系統(tǒng)的抗干擾能力,提高驅(qū)動(dòng)系統(tǒng)的控制性能,本文將異步電機(jī)矢量控制系統(tǒng)的和改進(jìn)滑模變結(jié)構(gòu)控制策略結(jié)合進(jìn)行了研究。 本文首先對(duì)異步電機(jī)矢量控制原理進(jìn)行了分析并在MATLAB/Simulink仿真軟件中建立了異步電機(jī)矢量控制系統(tǒng)模型。其次本文第三章通過(guò)對(duì)大量文獻(xiàn)以及控制系統(tǒng)仿真研究得出滑模變結(jié)構(gòu)控制雖然對(duì)電機(jī)模型要求不高具有較好的魯棒性但存在抖振。為了減小控制系統(tǒng)抖振問(wèn)題,本文第四章建立了基于改進(jìn)的滑模變結(jié)構(gòu)控制的控制器。改進(jìn)的滑模變結(jié)構(gòu)控制器在常規(guī)滑模變結(jié)構(gòu)控制器中增加了改進(jìn)的切換項(xiàng)函數(shù)。切換項(xiàng)函數(shù)采用了改進(jìn)的指數(shù)趨近律,該趨近律的趨近速度能很好的反應(yīng)出系統(tǒng)當(dāng)前狀態(tài)與滑模面的距離,能根據(jù)狀態(tài)量與滑模面之間的距離自動(dòng)調(diào)節(jié)趨近速度。最后為了對(duì)改進(jìn)的混合滑模變結(jié)構(gòu)器性能進(jìn)行研究,第五章利用MATLAB/Simulink仿真軟件在異步電機(jī)矢量控制系統(tǒng)中分別建立了PI控制器,常規(guī)滑模變結(jié)構(gòu)控制器以及改進(jìn)的滑模變結(jié)構(gòu)控制器模型。并對(duì)系統(tǒng)速度跟蹤,正反轉(zhuǎn),增加負(fù)載等工況下系統(tǒng)控制性能進(jìn)行了仿真。仿真結(jié)果表明改進(jìn)的滑模變結(jié)構(gòu)控制器能有效的加快系統(tǒng)跟蹤速度,改善系統(tǒng)動(dòng)態(tài)調(diào)速能力,增強(qiáng)系統(tǒng)魯棒性。
[Abstract]:The asynchronous motor has the advantages of high reliability, low manufacturing cost and convenient maintenance, so it is widely used in the field of AC speed regulation. However, the induction motor is a time-varying system with strong coupling. The excitation current and torque current can not be controlled separately, which makes the mathematical model of the induction motor deviate in the course of speed regulation, and the control accuracy is high. Speed regulation performance can not meet the requirements. Vector control of asynchronous motor can solve the coupling problem of stator and rotor flux in AC control system and improve the control performance of AC speed regulating system. However, in order to obtain good speed control performance of asynchronous motor vector control system, it is necessary to rely on precise motor parameters. There will inevitably be some problems such as uncertainty disturbance and the change of motor parameters due to the increase of temperature. All of these will make the control performance of the speed control system degrade. Sliding mode variable structure control (VSC) requires not only the mathematical model of the system, but also has good robustness to the variation of motor parameters. In order to further enhance the anti-interference ability of the system and improve the control performance of the drive system, the vector control system of asynchronous motor and the improved sliding mode variable structure control strategy are studied in this paper. In this paper, the principle of vector control of asynchronous motor is analyzed, and the model of vector control system of asynchronous motor is established in MATLAB/Simulink simulation software. Secondly, the third chapter of this paper through a lot of literature and control system simulation research, it is concluded that the sliding mode variable structure control has good robustness to the motor model, but there exists buffeting. In order to reduce the buffeting problem of control systems, a controller based on improved sliding mode variable structure control is established in chapter 4. The improved sliding mode variable structure controller adds an improved switching term function to the conventional sliding mode variable structure controller. The switching term function adopts an improved exponential approach law. The approach speed of the law can well reflect the distance between the current state of the system and the sliding mode surface, and can automatically adjust the approach velocity according to the distance between the state quantity and the sliding mode surface. Finally, in order to study the performance of the improved hybrid sliding mode converter, in chapter 5, Pi controllers are established in the vector control system of asynchronous motor using MATLAB/Simulink simulation software. Conventional sliding mode variable structure controller and improved sliding mode variable structure controller model. The control performance of the system is simulated under the conditions of speed tracking, forward and reverse rotation and increasing load. The simulation results show that the improved sliding mode variable structure controller can effectively accelerate the tracking speed of the system, improve the dynamic speed of the system and enhance the robustness of the system.
【學(xué)位授予單位】:河北工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM343
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 L.A.d.S.Ribeiro,倪覺(jué)生;采用脈寬調(diào)制的正弦電壓波形實(shí)時(shí)預(yù)測(cè)異步電機(jī)的電氣參數(shù)(一)[J];變流技術(shù)與電力牽引;2002年02期
2 張麗萍;異步電機(jī)的瞬態(tài)飽和仿真模型研究[J];電氣傳動(dòng)自動(dòng)化;2002年05期
3 杜京義;高電壓大功率異步電機(jī)變頻調(diào)速應(yīng)用技術(shù)探討[J];工礦自動(dòng)化;2002年03期
4 楊曉春;;異步電機(jī)疊頻法溫升試驗(yàn)研究[J];東方電機(jī);2002年03期
5 張艷萍;異步電機(jī)高性能變頻調(diào)速系統(tǒng)控制策略[J];北華大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
6 張寅孩,蔡驪,熊宇,張仲超;高可靠性單相異步電機(jī)頻繁高速啟動(dòng)觸發(fā)電路[J];電力電子技術(shù);2003年02期
7 王曉琳,鄧智泉,張宏荃,嚴(yán)仰光;無(wú)軸承異步電機(jī)研究與實(shí)現(xiàn)[J];航空學(xué)報(bào);2003年03期
8 周有為;劉和平;劉述喜;;異步電機(jī)無(wú)速度傳感器矢量控制[J];電機(jī)與控制應(yīng)用;2005年09期
9 李少龍,任永德,金愛(ài)娟,李航天;多相異步電機(jī)不對(duì)稱運(yùn)行的研究[J];中小型電機(jī);2005年01期
10 李建軍;盛潔波;王翠;桂衛(wèi)華;;異步電機(jī)定轉(zhuǎn)子參數(shù)的辨識(shí)方法研究[J];電工技術(shù)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前10條
1 孟甲凡;;基于Matlab/SIMULINK的異步電機(jī)的建模與仿真[A];第六屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2009年
2 邰永;劉趙淼;;小型異步電機(jī)機(jī)殼表面的通風(fēng)計(jì)算[A];北京力學(xué)會(huì)第15屆學(xué)術(shù)年會(huì)論文摘要集[C];2009年
3 李國(guó)進(jìn);胡常林;侯緒達(dá);;異步電機(jī)離線參數(shù)辨識(shí)[A];中南六。▍^(qū))自動(dòng)化學(xué)會(huì)第二十九屆學(xué)術(shù)年會(huì)論文集[C];2011年
4 趙波;厲虹;;異步電機(jī)定位控制方法研究[A];冶金自動(dòng)化信息網(wǎng)年會(huì)論文集[C];2004年
5 趙波;厲虹;;異步電機(jī)定位控制方法研究[A];全國(guó)冶金自動(dòng)化信息網(wǎng)年會(huì)論文集[C];2004年
6 徐建華;姚來(lái)強(qiáng);;異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)的設(shè)計(jì)與仿真[A];自動(dòng)化技術(shù)與冶金流程節(jié)能減排——全國(guó)冶金自動(dòng)化信息網(wǎng)2008年會(huì)論文集[C];2008年
7 姚來(lái)強(qiáng);徐建華;;異步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)的設(shè)計(jì)與仿真[A];第九屆全國(guó)電技術(shù)節(jié)能學(xué)術(shù)會(huì)議論文集[C];2007年
8 李謙祥;胡靜濤;;基于虛擬儀器的異步電機(jī)試驗(yàn)系統(tǒng)與應(yīng)用[A];第三屆全國(guó)虛擬儀器大會(huì)論文集[C];2008年
9 潘偉;許波;孫曉東;朱q
本文編號(hào):1920044
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1920044.html