動力電池成組液流熱管理系統(tǒng)設計分析
發(fā)布時間:2018-05-11 09:50
本文選題:動力電池成組 + 熱管理 ; 參考:《吉林大學》2014年碩士論文
【摘要】:隨著能源和環(huán)境問題的日益嚴峻,作為新能源汽車典型的電動汽車,,無疑是汽車發(fā)展進程中的一個重要標志。動力電池是電動汽車發(fā)展的巨大難題,不過新材料和電化學技術的飛速發(fā)展使新型電池應運而生,給電動汽車帶來了生機和發(fā)展機遇。但是,電池工作的電化學效能與溫度緊密相關,它需要嚴格的熱控,否則制約電動汽車在高溫和低溫氣候環(huán)境下高效應用。本文設計了動力電池成組液流換熱系統(tǒng),并利用CFD仿真方法對其低溫預熱和高溫冷卻問題進行了研究。 研究工作在總結電動汽車及其動力電池的發(fā)展概況的基礎上,進一步歸納了國內外有關動力電池熱管理技術的研究工作進展。目前為止,動力電池熱管理系統(tǒng)的冷卻方式主要有:空氣冷卻、液體冷卻、熱管冷卻及相變材料冷卻,工程應用以風冷形式為主,逐步開始有液體循環(huán)冷卻;并逐步關注電池熱管理的加熱作用。鑒于液流循環(huán)冷暖熱控的電池成組熱管理系統(tǒng),本文對研究內容、研究方法及研究意義進行了闡述。 針對成組電池,設計了對稱叉排A型和錯列叉排B型兩種電池液流換熱結構,力求在保證良好熱管理和冷暖熱控的基礎上,實現(xiàn)輕量化和緊湊化目標,為大規(guī)模大容量多疊層組合應用提供潛力。研究工作圍繞成組電池液流系統(tǒng)構建模型,包括模型建立、數(shù)值模擬、計算方法和分析評價方法等。其中,系統(tǒng)研究了模型簡化、邊界條件和工況條件,開展了模型和計算方法的實驗驗證,以保證計算精度。 以B型換熱系統(tǒng)為算例,對其換熱特性、流動特性及電池表面溫度均勻性進行了分析。結果表明,換熱系統(tǒng)中兩端區(qū)域流道的傳熱量、換熱系數(shù)及流量均大于中間區(qū)域的流道,不同位置特征點進入溫度穩(wěn)定狀態(tài)的時間也不一致。不同電池單體上的表面溫差幾乎無差異,同一電池單體上表面溫差也保證在合適的溫度范圍內。 采用A型和B型兩種換熱系統(tǒng)對比的方式分析了熱流變主要影響因素作用特性。結果表明,對于同一液流換熱系統(tǒng),常規(guī)流量和初始溫度對電池表面溫度均勻性影響不大,低流量、電池單體發(fā)熱量和電池導熱系數(shù)對電池表面溫度均勻性有一定影響,液流入口溫度對電池表面溫度有影響,對電池表面溫度均勻性影響很小,改變電池表面扁管間的間距,對電池表面的溫度均勻性、流動阻力和流動均勻性均有影響;兩種液流換熱系統(tǒng)相比較而言,B型優(yōu)于A型。本文還提出了提升電池表面溫度均勻性的措施,即在電池表面加薄層高導熱系數(shù)的石墨片,結果發(fā)現(xiàn)同等條件下,可以將電池單體表面的溫差縮小為原來的二分之一,大幅度的提高了電池表面的溫度均勻性。 針對B型液流換熱系統(tǒng),分析了在低溫預熱及高溫急速冷卻下的性能。結果表明,常規(guī)流量對低溫預熱和高溫急速冷卻影響不大;低溫預熱過程中入口溫度越高,同樣的時間內電池升高的溫度越快;高溫急速冷卻過程中入口溫度越低,同樣的時間內溫度下降的越快,冷卻效果越好。實驗結果表明,在低溫和高溫工況下,本文設計的液流換熱系統(tǒng)可以在短時間內將電池溫度調整到正常的工作溫度范圍。
[Abstract]:As energy and environmental problems become more and more serious , as a typical electric vehicle for new energy vehicles , it is no doubt an important symbol in the development of electric vehicles . However , the rapid development of new materials and electrochemical technologies has brought new batteries to life and has brought vitality and development opportunities for electric vehicles . However , the electrochemical efficiency of the new materials and electrochemical technologies is closely related to the temperature .
On the basis of summarizing the development of EV and its power battery , the research work of power battery thermal management is summarized . So far , the cooling mode of power battery thermal management system mainly includes air cooling , liquid cooling , heat pipe cooling and phase change material cooling . The application of power battery is mainly in air - cooled form , and liquid circulation cooling is gradually started .
In view of the battery group thermal management system , the research contents , research methods and research significance are described in this paper .
In this paper , two types of battery liquid flow heat transfer structures are designed for the group of batteries , which can realize the objective of light weight and compactness on the basis of ensuring the good thermal management and the cold and warm thermal control , and provide the potential for the large - scale large - capacity multi - stack combined application . The research works around the model of the group battery flow system , including model establishment , numerical simulation , calculation method and analysis and evaluation method , etc . The experimental verification of the model and the calculation method is carried out in the system , and the calculation precision is guaranteed .
The heat transfer characteristics , flow characteristics and the uniformity of the surface temperature of the battery were analyzed by taking the B - type heat exchange system as an example . The results show that the heat transfer , the heat transfer coefficient and the flow rate of the flow channels at both ends of the heat exchange system are larger than those in the middle region .
The results show that the influence of the flow inlet temperature on the uniformity of the surface temperature of the battery is affected by the influence of the flow inlet temperature on the surface temperature uniformity of the battery , and the temperature uniformity , the flow resistance and the flow uniformity of the surface of the battery are affected .
The results show that the temperature difference between the surface of the cell and the surface of the battery can be reduced to one - half of the original one , and the temperature uniformity of the surface of the battery can be greatly improved .
For B - type liquid heat transfer system , the performance of low temperature preheating and high temperature rapid cooling is analyzed . The results show that the conventional flow has little effect on low temperature preheating and high temperature rapid cooling ;
the higher the inlet temperature during the low temperature preheating , the faster the temperature of the battery rises in the same time ;
The higher the inlet temperature during the high temperature rapid cooling process , the faster the temperature drop in the same time , the better the cooling effect . The experimental results show that the flow heat exchange system designed in this paper can adjust the battery temperature to the normal operating temperature range in a short time under the conditions of low temperature and high temperature .
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912
【參考文獻】
相關期刊論文 前10條
1 符曉玲;商云龍;崔納新;;電動汽車電池管理系統(tǒng)研究現(xiàn)狀及發(fā)展趨勢[J];電力電子技術;2011年12期
2 付正陽,林成濤,陳全世;電動汽車電池組熱管理系統(tǒng)的關鍵技術[J];公路交通科技;2005年03期
3 陳新傳;宋強;呂昊;;國內外鋰離子動力電池發(fā)展概況及啟示[J];船電技術;2011年04期
4 雷治國;張承寧;;電動汽車電池組熱管理系統(tǒng)的研究進展[J];電源技術;2011年12期
5 張國慶;饒中浩;吳忠杰;傅李鵬;;采用相變材料冷卻的動力電池組的散熱性能[J];化工進展;2009年01期
6 張國慶;吳忠杰;饒中浩;傅李鵬;;動力電池熱管冷卻效果實驗[J];化工進展;2009年07期
7 王健;許思傳;陳黎;;基于AMESim的純電動汽車熱管理系統(tǒng)的優(yōu)化設計[J];佳木斯大學學報(自然科學版);2011年05期
8 李茂德;王峰;梁們;;動力電池散熱數(shù)值模擬分析[J];熱科學與技術;2011年02期
9 徐哲;;我國電動汽車發(fā)展現(xiàn)狀與對策研究[J];上海汽車;2006年05期
10 朱暉;張逸成;朱昌平;陳磊濤;;電動汽車電池組熱管理系統(tǒng)的研究[J];實驗室研究與探索;2011年06期
本文編號:1873457
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1873457.html