高性能鈦酸鋇基復(fù)合薄膜超級(jí)電容器的制備及性能研究
本文選題:鈦酸鋇 + 超級(jí)電容器; 參考:《中國(guó)海洋大學(xué)》2015年碩士論文
【摘要】:鈦酸鋇材料具有高介電常數(shù)、高擊穿強(qiáng)度而被電子工業(yè)廣泛應(yīng)用。鈦酸鋇基超級(jí)電容器具有全固態(tài)、耐高壓等性能,但是其在低頻區(qū)介電損耗較大,自放電現(xiàn)象較嚴(yán)重,這就限制了鈦酸鋇基超級(jí)電容器的應(yīng)用與發(fā)展。所以研究的方向應(yīng)該側(cè)重于降低電介質(zhì)材料的介電損耗,進(jìn)而獲得在低頻區(qū)具有高介電性能和高容量性能的超級(jí)電容器。本文旨在鈦酸鋇周?chē)胍粚友趸?制備性能優(yōu)異的鈦酸鋇基復(fù)合薄膜材料,并且對(duì)復(fù)合薄膜材料的低頻介電性能進(jìn)行探究,對(duì)其結(jié)構(gòu)與性能的關(guān)系進(jìn)行分析,然后組裝超級(jí)電容器,探討其低頻容量性能及低頻測(cè)試的穩(wěn)定性。主要內(nèi)容和結(jié)果如下:1.采用石墨紙做電極,在鈦酸鋇周?chē)胍粚友趸?B203單層薄膜、B2O3-SiO2復(fù)合薄膜),探討了SiO2與B2O3的最佳混合比例為3:1,成功制備了B2O3-SiO2復(fù)合薄膜層。通過(guò)不同溫度處理B2O-SiO2/BaTiO3薄膜可以得出900℃是最佳的處理溫度,介電層在900℃時(shí)表現(xiàn)出了優(yōu)異的介電性能,在1Hz時(shí)介電常數(shù)為1108,介電損耗為0.4345。通過(guò)不同升溫速率對(duì)比,可以得出2℃/min的升溫速率,能夠促進(jìn)B2O3-SiO2的熔融,并且形成均勻?qū)?促進(jìn)介電層介電性能的提高。此外,通過(guò)多片疊加,成功制備了B2O3-SiO2/BaTiO3超級(jí)電容器。2.采用價(jià)格低廉的鋁片作為電極材料,采用在空氣中熱處理的方法,使鈦酸鋇與鋁電極表面生成一層熱氧化膜,使電極與氧化物一體化,通過(guò)不同的熱處理制度來(lái)影響熱氧化膜的形成和鋁電極的存在狀態(tài),進(jìn)而提高電極與氧化鋁層的有效接觸面積及氧化鋁的含量,熱處理最優(yōu)條件為:10℃/min、120min,在500mHz下的鈦酸鋇電容器的介電常數(shù)最大,達(dá)到3.84×104,介電常數(shù)在低頻區(qū)的增加較為明顯,介電損耗最低為0.2801,電容器的電容最大,達(dá)到2.92gF,最終降低了介電損耗,提高了Al/Al2O3/BaTiO3超級(jí)電容器的容量。3.選用三乙醇胺作為處理液,通過(guò)化學(xué)轉(zhuǎn)化法使鋁電極表面生成化學(xué)轉(zhuǎn)化膜(一水合軟鋁石),最終提高薄膜中氧化鋁的含量。通過(guò)一定的氧化處理制度,來(lái)改變生成氧化鋁的結(jié)構(gòu)和形態(tài),確定了最優(yōu)氧化條件:氧化速率為10℃/min,氧化時(shí)間為30min。氧化鋁的存在可以促進(jìn)鈦酸鋇在低頻區(qū)的介電和電容性能的提升,在500mHz下介電常數(shù)為3.84×104,電容值達(dá)到3.95μF,并通過(guò)100V、200V、300V高電壓充放電,得出了電容器的容量密度及其耐壓性。通過(guò)等效電路擬合探究了氧化鋁和鈦酸鋇膜層的電化學(xué)性能,驗(yàn)證了鈦酸鋇和氧化鋁膜層的結(jié)合結(jié)構(gòu),證明了電介質(zhì)層中有氧化鋁的存在。此外,通過(guò)對(duì)比有無(wú)三乙醇胺處理的電容器的性能,可以得出用三乙醇胺處理的電容器的具有更優(yōu)異的介電和容量性能,三乙醇胺處理在制備Al/Al2O3/BaTiO3超級(jí)電容器中起到了重要的作用。4.采用全新的EIS固定頻率測(cè)試法,對(duì)Al/Al2O3/BaTiO3超級(jí)電容器的低頻測(cè)試穩(wěn)定性進(jìn)行了探討,探討了振幅、測(cè)試周期、頻率對(duì)電容器電容測(cè)試穩(wěn)定性的影響,研究結(jié)果得出振幅、測(cè)試周期、頻率對(duì)穩(wěn)定性都有一定影響,其中頻率影響最大。并且建立測(cè)試周期與頻率之間的等效公式模型,為本體系實(shí)驗(yàn)縮短測(cè)試時(shí)間和提高EIS測(cè)試效率提供了可行性。
[Abstract]:Barium titanate has high dielectric constant and high breakdown strength and is widely used in the electronics industry. Barium titanate supercapacitor has all solid state and high pressure resistance. However, the dielectric loss of the barium titanate is large and the self discharge phenomenon is serious. This restricts the application and development of barium titanate supercapacitor. Therefore, the research direction should be done. The dielectric loss of dielectric materials is reduced and the supercapacitor with high dielectric properties and high capacity in low frequency region is obtained. This paper aims at introducing a layer of oxide around barium titanate to prepare barium titanate composite films with excellent properties, and explore the low frequency dielectric properties of the composite thin film materials. The relationship between structure and performance is analyzed, and then supercapacitor is assembled to discuss the low frequency capacity and stability of low frequency test. The main contents and results are as follows: 1. using graphite paper as electrode and introducing a layer of oxide (B203 single layer film, B2O3-SiO2 compound film) around barium titanate, the optimum mixing ratio of SiO2 and B2O3 is 3. 1, the B2O3-SiO2 composite film layer is successfully prepared. The best treatment temperature can be obtained by treating B2O-SiO2/BaTiO3 film at different temperatures. The dielectric layer shows excellent dielectric properties at 900 C, the dielectric constant is 1108 at 1Hz, and the dielectric loss is 0.4345. through the contrast of different heating rates, and the temperature of 2 centigrade can be obtained at /min. The rate can promote the melting of B2O3-SiO2 and form a homogeneous layer and promote the dielectric property of dielectric layer. In addition, the B2O3-SiO2/BaTiO3 supercapacitor.2. is successfully prepared by multi slice superposition, and the low price aluminum sheet is used as the electrode material. The method of heat treatment in the air is used to produce a layer of barium titanate and the aluminum electrode surface. The thermal oxidation film, which integrates the electrode with the oxide, affects the formation of the hot oxide film and the existence state of the aluminum electrode through different heat treatment systems, and then improves the effective contact area of the electrode and the alumina layer and the content of alumina. The optimal heat treatment condition is: the dielectric constant of the barium titanate capacitor at 10, /min, 120min, and 500mHz The maximum number is 3.84 * 104, the dielectric constant increases more obviously in the low frequency area, the dielectric loss is lowest 0.2801, the capacitor has the maximum capacitance, the dielectric loss is 2.92gF, the dielectric loss is reduced and the capacity of Al/Al2O3/BaTiO3 supercapacitor is improved by using triethanolamine as the treatment solution, and the surface of aluminum electrode is generated by chemical conversion method. The conversion film (one hydrated bauxite) is used to improve the content of alumina in the film. Through a certain oxidation treatment system, the structure and morphology of the alumina are changed, and the optimum oxidation condition is determined: the oxidation rate of 10 C and the oxidation time of 30min. alumina can promote the dielectric and capacitance of barium titanate in the low frequency region. The dielectric constant is 3.84 * 104 at 500mHz and the capacitance is 3.95 mu F. The capacity density and pressure resistance of the capacitor are obtained by 100V, 200V, 300V high voltage charge and discharge. The electrochemical performance of the alumina and barium titanate film is investigated by the equivalent circuit fitting, and the binding structure of barium titanate and alumina film is verified. It is clear that there is the presence of alumina in the dielectric layer. In addition, by comparing the performance of the capacitors treated with triethanolamine, it can be concluded that the capacitors with triethanolamine have better dielectric and capacity properties. Triethanolamine treatment plays an important role in the preparation of Al/Al2O3/BaTiO3 super electric containers and.4. uses a new E. IS fixed frequency test method is used to investigate the stability of low frequency test of Al/Al2O3/BaTiO3 supercapacitor. The influence of amplitude, test period and frequency on the stability of capacitor capacitance test is discussed. The results show that amplitude, test period and frequency have a definite influence on the stability of the capacitor, among which the frequency has the greatest influence. And the test period is established. The equivalent formula between frequency and frequency provides feasibility for shortening the testing time and improving the efficiency of EIS test.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM53;TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許開(kāi)卿;吳季懷;范樂(lè)慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
2 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
3 ;歐盟創(chuàng)新型大功率超級(jí)電容器問(wèn)世[J];功能材料信息;2014年01期
4 周霞芳;;無(wú)污染 充電快 春節(jié)后有望面市 周?chē)?guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無(wú)機(jī)材料學(xué)報(bào);2002年04期
6 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
8 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
9 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴(lài)春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):1790691
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1790691.html