基于GAMS的電力系統(tǒng)運行優(yōu)化
本文選題:經(jīng)濟調(diào)度 切入點:直流最有潮流 出處:《華南理工大學》2014年碩士論文
【摘要】:隨著人類對能源需求的不斷提高,電能作為一種清潔的二次能源在我們?nèi)粘I钪邪缪葜絹碓街匾慕巧,電力需求的不斷增加、電網(wǎng)規(guī)模的日漸擴大,這些給電力系統(tǒng)運行帶來了新的挑戰(zhàn),電力系統(tǒng)運行的經(jīng)濟性作為現(xiàn)代電力系統(tǒng)運行必須滿足的四個基本要求之一,一直是電力工作者和科研者潛心研究的課題,合理的電力系統(tǒng)運行優(yōu)化手段會給全社會帶來巨大的經(jīng)濟效和環(huán)保效益。 首先,,本文建立電力系統(tǒng)經(jīng)濟調(diào)度的線性優(yōu)劃模型,并進行了誤差分析,得出了分段割線線性化發(fā)電機二次耗量特性曲線產(chǎn)生的誤差非常小的結(jié)論,并把這一結(jié)論應用到機組組合問題優(yōu)化模型中去,還根據(jù)線性規(guī)劃對偶原理的經(jīng)濟性意義分析了如何確定系統(tǒng)的最優(yōu)電價。 其次,建立非線性規(guī)劃的電力系統(tǒng)直流最優(yōu)潮流模型,模型是在標準的直流最優(yōu)潮流模型的基礎(chǔ)上增加了節(jié)點電壓相角差的平方和這一懲罰項,得到一個嚴格凸二次規(guī)劃問題,通過這一模型可以直接求解出節(jié)點注入的有功功率、支路潮流、節(jié)點邊際電價以及節(jié)點電壓相角差,同時得出不考慮網(wǎng)損的情況下輸電線路的功率是系統(tǒng)發(fā)電機功率的線性組合。 最后,建立了基于混合整數(shù)規(guī)劃的電力系統(tǒng)機組組合問題的優(yōu)化模型,模擬海南電網(wǎng)的能源結(jié)構(gòu)同時考慮火電、水電、核電、風電、氣電以及抽水蓄能六種機組,分析了拉格朗日松弛法、分支界定法和割平面法原理,再利用前兩個模型得到的結(jié)論,以實際參數(shù)為基礎(chǔ)進行了仿真計算,形成了可行的開停機方案和機組最優(yōu)出力曲線。
[Abstract]:With the increasing demand for energy, electric energy plays a more and more important role in our daily life as a kind of clean secondary energy. With the increasing demand for electricity, the scale of power grid is expanding day by day.These have brought new challenges to the operation of power system. As one of the four basic requirements of modern power system operation, the economy of power system operation has always been the research topic of electric power workers and researchers.Reasonable power system operation optimization means will bring huge economic and environmental benefits to the whole society.Firstly, the linear optimal model of power system economic dispatch is established, and the error analysis is carried out, and the conclusion is drawn that the error generated by the characteristic curve of quadratic consumption of piecewise Secant linearized generator is very small.The conclusion is applied to the optimization model of unit commitment problem, and how to determine the optimal electricity price of the system is analyzed according to the economic significance of the dual principle of linear programming.Secondly, the DC optimal power flow model of power system with nonlinear programming is established. Based on the standard DC optimal power flow model, the penalty term of square sum of nodal voltage phase difference is added to the model, and a strictly convex quadratic programming problem is obtained.Through this model, the active power injected by the node, the branch power flow, the marginal price of the node and the phase angle difference of the node voltage can be directly solved.At the same time, it is concluded that the power of the transmission line is the linear combination of the power of the system without considering the network loss.Finally, an optimization model of power system unit combination problem based on mixed integer programming is established, which simulates the energy structure of Hainan Power Grid and considers six types of units, including thermal power, hydropower, nuclear power, wind power, gas and electricity, and pumped storage.The principles of Lagrangian relaxation method, branch definition method and cutting plane method are analyzed. Based on the conclusions obtained from the first two models and based on the actual parameters, the feasible open / stop scheme and the optimal generating force curve are obtained.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM732
【參考文獻】
相關(guān)期刊論文 前10條
1 丁曉鶯,王錫凡;最優(yōu)潮流在電力市場環(huán)境下的最新發(fā)展[J];電力系統(tǒng)自動化;2002年13期
2 雷亞洲;與風電并網(wǎng)相關(guān)的研究課題[J];電力系統(tǒng)自動化;2003年08期
3 高宗和;耿建;張顯;陳皓勇;文福拴;;大規(guī)模系統(tǒng)月度機組組合和安全校核算法[J];電力系統(tǒng)自動化;2008年23期
4 王敏蔚;楊莉;;考慮安全約束的機組組合免疫算法模型[J];電力系統(tǒng)自動化;2010年22期
5 陳皓勇,王錫凡;機組組合問題的優(yōu)化方法綜述[J];電力系統(tǒng)自動化;1999年04期
6 周明,李庚銀,倪以信;電力市場下電力需求側(cè)管理實施機制初探[J];電網(wǎng)技術(shù);2005年05期
7 龍強;李覺友;;次梯度法在求解非光滑最優(yōu)化問題時的計算效果研究(英文)[J];重慶師范大學學報(自然科學版);2013年06期
8 許丹;夏少連;丁強;馬志民;;基于啟發(fā)式混合整數(shù)規(guī)劃法求解大規(guī)模機組組合問題[J];電力系統(tǒng)保護與控制;2012年21期
9 趙子臣,相年德,夏清,張伯明;應用啟發(fā)式與逐步動態(tài)規(guī)劃法進行機組最優(yōu)組合[J];清華大學學報(自然科學版);1997年01期
10 游兆永;安和平;;參數(shù)規(guī)劃中最優(yōu)值函數(shù)的廣義凹凸性(Ⅰ)[J];西安交通大學學報;1990年03期
本文編號:1695780
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1695780.html