無(wú)刷電勵(lì)磁同步電機(jī)勵(lì)磁控制系統(tǒng)研究
本文選題:無(wú)刷勵(lì)磁 切入點(diǎn):PID控制 出處:《沈陽(yáng)工業(yè)大學(xué)》2015年碩士論文
【摘要】:無(wú)刷電勵(lì)磁同步電機(jī)是近年來提出的一種新型電機(jī),該電機(jī)除具有常規(guī)電勵(lì)磁同步電機(jī)轉(zhuǎn)速恒定、功率因數(shù)可調(diào)及效率高等優(yōu)點(diǎn)外,還具有無(wú)電刷滑環(huán)結(jié)構(gòu)、維護(hù)成本低、可靠性高等特點(diǎn),特別適用于易燃易爆及風(fēng)力發(fā)電等應(yīng)用領(lǐng)域。這種電機(jī)定子上有兩套極數(shù)不同的繞組,一套為2p極三相電樞繞組,直接與電網(wǎng)相連接;另一套為2q極直流勵(lì)磁繞組,為電機(jī)提供勵(lì)磁電流,轉(zhuǎn)子為磁障籠型混合式轉(zhuǎn)子。由于這種電機(jī)的發(fā)展較晚,目前還沒有與之相適應(yīng)的勵(lì)磁控制系統(tǒng)能夠配合這種電機(jī)運(yùn)行,,為了使無(wú)刷電勵(lì)磁同步電機(jī)能夠發(fā)揮出最佳性能,本文設(shè)計(jì)并研制了一套無(wú)刷電勵(lì)磁同步電機(jī)勵(lì)磁控制系統(tǒng)。 首先,本文研究了無(wú)刷電勵(lì)磁同步電機(jī)的工作機(jī)理,對(duì)該電機(jī)特殊的定轉(zhuǎn)子結(jié)構(gòu)和工作方式進(jìn)行了具體的介紹,并與傳統(tǒng)的旋轉(zhuǎn)整流器式無(wú)刷電勵(lì)磁同步電機(jī)進(jìn)行了對(duì)比分析,明確了研究的目的和意義。 其次,本文使用有限元仿真分析軟件Ansoft Maxwell建立了無(wú)刷電勵(lì)磁同步電機(jī)的有限元分析模型,利用多領(lǐng)域仿真分析軟件Simplorer建立了控制系統(tǒng)仿真模型,并將有限元模型導(dǎo)入到Simplorer中進(jìn)行聯(lián)合仿真。使用場(chǎng)路結(jié)合的方法對(duì)變負(fù)載恒定發(fā)電機(jī)端電壓等工作狀態(tài)進(jìn)行了仿真分析,針對(duì)仿真中發(fā)現(xiàn)的問題,本文對(duì)勵(lì)磁控制系統(tǒng)的電路結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì),改善了控制器的性能。 再次,本文針對(duì)無(wú)刷電勵(lì)磁同步電機(jī)對(duì)于勵(lì)磁控制系統(tǒng)的需求,提出了針對(duì)不同工況的勵(lì)磁電流控制策略。在電動(dòng)機(jī)工況中,勵(lì)磁控制系統(tǒng)根據(jù)電機(jī)轉(zhuǎn)速自動(dòng)判斷何時(shí)對(duì)電機(jī)進(jìn)行牽入同步,通過調(diào)節(jié)勵(lì)磁電流來調(diào)整電動(dòng)機(jī)功率因數(shù)。在發(fā)電機(jī)雙閉環(huán)應(yīng)用工況中,勵(lì)磁控制系統(tǒng)使用雙閉環(huán)控制算法使發(fā)電機(jī)發(fā)出的端電壓保持在給定的數(shù)值附近,當(dāng)發(fā)電機(jī)負(fù)載發(fā)生突變時(shí),勵(lì)磁控制系統(tǒng)迅速調(diào)整勵(lì)磁電流的大小以應(yīng)對(duì)這種變化,最大限度的保證發(fā)電機(jī)輸出電壓的穩(wěn)定。 最后,本文設(shè)計(jì)并研制了一臺(tái)無(wú)刷電勵(lì)磁同步電機(jī)勵(lì)磁控制系統(tǒng),包括勵(lì)磁控制器的硬件結(jié)構(gòu)設(shè)計(jì)和控制核心的軟件編寫。勵(lì)磁控制系統(tǒng)利用微控制器的硬件PWM信號(hào)和離散式數(shù)字PI算法以閉環(huán)控制的方法對(duì)無(wú)刷電勵(lì)磁同步電機(jī)的勵(lì)磁電流進(jìn)行了精確的控制,對(duì)本文所提出的勵(lì)磁控制策略的有效性進(jìn)行了驗(yàn)證。
[Abstract]:Brushless excitation synchronous motor is a new type of motor proposed in recent years. In addition to the advantages of constant speed, adjustable power factor and high efficiency of conventional electric excitation synchronous motor, it also has brushless sliding ring structure and low maintenance cost. Because of its high reliability, it is especially suitable for applications such as flammable and explosive power generation and wind power generation. There are two sets of winding with different poles on the stator of this kind of motor, one is 2p pole three-phase armature winding, which is directly connected to the power grid; The other is the 2Q DC excitation winding, which provides the excitation current for the motor, and the rotor is the magnetic barrier cage type hybrid rotor. Due to the late development of this kind of motor, there is no excitation control system that can cooperate with the motor at present. In order to give full play to the best performance of brushless excitation synchronous motor, an excitation control system for brushless excitation synchronous motor is designed and developed in this paper. Firstly, this paper studies the working mechanism of brushless excitation synchronous motor, and introduces the special structure and working mode of the motor. And compared with the traditional rotary rectifier brushless excitation synchronous motor, the purpose and significance of the research are clarified. Secondly, the finite element analysis model of brushless excitation synchronous motor is established by using the finite element simulation analysis software Ansoft Maxwell, and the control system simulation model is established by using the multi-domain simulation analysis software Simplorer. The finite element model is introduced into Simplorer for joint simulation. The working state of variable load constant generator terminal voltage is simulated and analyzed by the method of field circuit combination. The problems found in the simulation are pointed out. In this paper, the circuit structure of excitation control system is optimized and the performance of controller is improved. Thirdly, according to the demand of brushless excitation synchronous motor for excitation control system, this paper puts forward excitation current control strategy for different working conditions. The excitation control system automatically determines when to pull the motor into synchronization according to the motor speed, and adjusts the motor power factor by adjusting the excitation current. The excitation control system uses a double closed loop control algorithm to keep the terminal voltage of the generator near a given value. When the load of the generator changes, the excitation control system quickly adjusts the magnitude of the excitation current to cope with this change. Maximum guarantee generator output voltage stability. Finally, an excitation control system for brushless synchronous motor is designed and developed. The excitation control system uses the hardware PWM signal of the microcontroller and the discrete digital Pi algorithm to control the brushless excitation synchronous motor by the closed loop control method. The excitation current is controlled accurately, The effectiveness of the excitation control strategy proposed in this paper is verified.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 解侖,孫一康,王志良,魯億方,杜滄,申祥源;自級(jí)聯(lián)式感應(yīng)電動(dòng)機(jī)控制系統(tǒng)的研制[J];北京科技大學(xué)學(xué)報(bào);2002年06期
2 黃小鋒;;PID在發(fā)電機(jī)勵(lì)磁控制系統(tǒng)中的應(yīng)用[J];電工技術(shù);2007年09期
3 湯洪海;李春文;戎袁杰;;基于Lyapunov函數(shù)的非線性勵(lì)磁控制器設(shè)計(jì)[J];電氣應(yīng)用;2007年08期
4 錢建平;向鐵元;;同步發(fā)電機(jī)光控?zé)o刷勵(lì)磁系統(tǒng)的研究[J];電機(jī)技術(shù);2006年03期
5 黃從武,陳少昌;同步發(fā)電機(jī)神經(jīng)網(wǎng)絡(luò)勵(lì)磁控制的仿真研究[J];電機(jī)與控制學(xué)報(bào);2000年04期
6 馮偉江;陳珩;;電力系統(tǒng)鎮(zhèn)定器和強(qiáng)力式勵(lì)磁調(diào)節(jié)器參數(shù)優(yōu)化及性能比較[J];電力系統(tǒng)自動(dòng)化;1990年04期
7 鄢圣茂,宋立忠,姚瓊薈;基于無(wú)源性的同步發(fā)電機(jī)勵(lì)磁控制[J];電力自動(dòng)化設(shè)備;2005年10期
8 王崢;龔學(xué)會(huì);王帆;;發(fā)電機(jī)勵(lì)磁控制系統(tǒng)故障診斷的神經(jīng)網(wǎng)絡(luò)模型[J];高電壓技術(shù);2008年11期
9 許其品;楊銘;徐蓉;;汽輪發(fā)電機(jī)滅磁電阻選擇[J];電力系統(tǒng)自動(dòng)化;2013年06期
10 崔召輝;劉憲林;王明東;于繼來;;灰色預(yù)測(cè)勵(lì)磁控制同步發(fā)電機(jī)動(dòng)態(tài)過程仿真[J];繼電器;2007年06期
本文編號(hào):1662884
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1662884.html