復(fù)雜工況下風(fēng)力發(fā)電機(jī)組關(guān)鍵部件故障分析與診斷研究
本文選題:風(fēng)力發(fā)電機(jī) 切入點(diǎn):復(fù)雜工況 出處:《沈陽(yáng)工業(yè)大學(xué)》2014年博士論文
【摘要】:近年來(lái),全球風(fēng)電產(chǎn)業(yè)迅猛發(fā)展,然而風(fēng)力發(fā)電機(jī)組的維護(hù)成本一直居高不下,這嚴(yán)重制約了風(fēng)電產(chǎn)業(yè)的健康發(fā)展。風(fēng)力發(fā)電機(jī)工作環(huán)境極為復(fù)雜,受風(fēng)速波動(dòng)、負(fù)載變化等影響,其振動(dòng)信號(hào)具有非平穩(wěn)、非線性、時(shí)變等特點(diǎn)。傳統(tǒng)的故障診斷方法,極少考慮風(fēng)力發(fā)電機(jī)的復(fù)雜工況條件對(duì)其動(dòng)態(tài)特征的影響,針對(duì)這一問(wèn)題,本文提出基于狀態(tài)變化過(guò)程和多傳感器融合的復(fù)雜工況下風(fēng)力發(fā)電機(jī)組關(guān)鍵部件故障定量分析與診斷方法。 針對(duì)風(fēng)力發(fā)電機(jī)組關(guān)鍵部件故障定量分析與診斷問(wèn)題,提出一種基于Hilbert-Huang變換和信息熵的故障定量分析與診斷方法——Hilbert空間特征熵方法,首先應(yīng)用Hilbert-Huang變換方法對(duì)信號(hào)時(shí)頻空間進(jìn)行劃分,進(jìn)而對(duì)得到的信號(hào)在瞬時(shí)時(shí)頻空間上的能量分布矩陣做奇異值分解,最后定義了信號(hào)在瞬時(shí)時(shí)頻劃分下的Hilbert空間特征熵。此外,為提高時(shí)頻空間劃分的精度,提出了一種改進(jìn)Hilbert-Huang變換端點(diǎn)效應(yīng)問(wèn)題的自適應(yīng)算法。為驗(yàn)證該算法,利用轉(zhuǎn)子實(shí)驗(yàn)臺(tái)設(shè)計(jì)不平衡-碰摩、松動(dòng)-碰摩兩種常見的轉(zhuǎn)子碰摩耦合故障實(shí)驗(yàn),采集了不同轉(zhuǎn)速下轉(zhuǎn)子故障信號(hào),,應(yīng)用Hilbert空間特征熵分析測(cè)試數(shù)據(jù),用故障信號(hào)熵值隨轉(zhuǎn)速變化的熵值曲線來(lái)描述轉(zhuǎn)子故障的程度和類型,實(shí)現(xiàn)了對(duì)轉(zhuǎn)子碰摩耦合故障的定量分析與診斷。 針對(duì)復(fù)雜工況下的風(fēng)力發(fā)電機(jī)組關(guān)鍵部件故障診斷問(wèn)題,首先對(duì)不同工況下風(fēng)力發(fā)電機(jī)傳動(dòng)系統(tǒng)進(jìn)行了振動(dòng)分析。分析了風(fēng)力發(fā)電機(jī)控制策略對(duì)其振動(dòng)的影響,進(jìn)而對(duì)不同風(fēng)速、不同負(fù)載條件下風(fēng)力發(fā)電機(jī)軸承振動(dòng)信號(hào)進(jìn)行了分析,從時(shí)域、頻域、時(shí)頻域、Hilbert空間特征熵等多個(gè)角度對(duì)不同工況下風(fēng)力發(fā)電機(jī)軸承的振動(dòng)信號(hào)特征進(jìn)行了研究,總結(jié)了風(fēng)力發(fā)電機(jī)振動(dòng)信號(hào)隨風(fēng)速、負(fù)載變化的規(guī)律。 在此基礎(chǔ)上,分別對(duì)風(fēng)力發(fā)電機(jī)中的軸承故障和齒輪箱故障的程度和狀態(tài)問(wèn)題進(jìn)行了研究。給出了考慮風(fēng)速影響的軸承振動(dòng)模型,從時(shí)域及時(shí)頻域的角度,對(duì)不同風(fēng)速下,正常軸承和故障軸承振動(dòng)信號(hào)進(jìn)行了比對(duì)分析。應(yīng)用Hilbert空間特征熵對(duì)不同風(fēng)速下的軸承振動(dòng)信號(hào)進(jìn)行分析,通過(guò)比較正常軸承與故障軸承振動(dòng)信號(hào)Hilbert空間特征熵值隨風(fēng)速變化的曲線,可以直觀的判斷出軸承故障。進(jìn)而應(yīng)用Hilbert空間特征熵方法對(duì)軸承故障前一個(gè)月的在線監(jiān)測(cè)數(shù)據(jù)進(jìn)行分析,結(jié)果表明,該法能有效的定量描述軸承故障程度變化的過(guò)程,并能根據(jù)其熵值突變的時(shí)間點(diǎn),較早的發(fā)現(xiàn)風(fēng)力發(fā)電機(jī)軸承故障。給出了風(fēng)力發(fā)電機(jī)齒輪箱中各級(jí)傳動(dòng)嚙合頻率及各齒輪特征頻率的計(jì)算方法,應(yīng)用嚙合頻率分析方法對(duì)齒輪箱正常信號(hào)及故障信號(hào)進(jìn)行了分析,結(jié)果表明,該方法雖然能有效分析出齒輪箱故障原因,但無(wú)法反映故障的程度,且診斷的結(jié)果不直觀,其過(guò)程也較為繁瑣。為更全面的反映齒輪箱的運(yùn)行狀態(tài),應(yīng)用Hilbert空間特征熵方法對(duì)齒輪箱多測(cè)點(diǎn)、多轉(zhuǎn)速、多故障狀態(tài)下的振動(dòng)信號(hào)進(jìn)行融合分析。從而得到了齒輪箱振動(dòng)信號(hào)Hilbert空間特征熵值隨測(cè)點(diǎn)位置、轉(zhuǎn)速變化的熵值平面,通過(guò)對(duì)比正常齒輪箱與故障齒輪箱的熵值平面,可以直觀的診斷出齒輪箱故障。通過(guò)對(duì)比連續(xù)離線測(cè)試獲得的故障齒輪箱熵值平面,表明通過(guò)該方法可以定量描述齒輪箱故障程度和狀態(tài)的變化。
[Abstract]:In recent years, rapid development of global wind power industry, but the maintenance cost of the wind turbine has been high, which seriously restricts the healthy development of wind power industry. The wind turbine working environment is very complex, affected by the fluctuation of wind speed, the load changes, the vibration signal is non-stationary, nonlinear, time-varying characteristics of fault. The traditional diagnostic methods, rarely take into account the influence of complex working conditions of wind turbines on the dynamic characteristics, in order to solve this problem, this paper based on the complicated working state change process and multi sensor fusion under the key components of wind turbine fault diagnosis and quantitative analysis method.
Aiming at the problem of quantitative analysis and fault diagnosis of the key components of wind turbine, proposed a Hilbert spatial entropy method based on quantitative analysis and fault diagnosis method of Hilbert-Huang transform and information entropy, the first application of Hilbert-Huang transform method of signal in time-frequency space division, and the energy distribution of the signal matrix in the instantaneous time-frequency space the singular value decomposition, finally defines the spatial features of Hilbert signal in time and frequency division instantaneous entropy condition. In addition, in order to improve the time-frequency space division accuracy, proposed an improved Hilbert-Huang transform to the end effect problem of adaptive algorithm. In order to validate the algorithm, using the design of rotor experimental platform of unbalance rubbing, loosening two kinds of rubbing rotor rubbing coupling faults of rotor fault signal acquisition experiment, different speed, entropy feature of the application of Hilbert spatial analysis test number According to the entropy value curve of the fault signal entropy and the speed change, it describes the degree and type of the rotor fault, and realizes the quantitative analysis and diagnosis of the rotor rub impact coupling fault.
The problem of fault diagnosis for the key components of wind turbine under complicated working conditions, the different conditions of wind turbine drive system was analyzed. The vibration analysis of wind turbine control strategy influence on its vibration, and the different wind speed, wind turbine bearing vibration signal under different load conditions are analyzed from time domain, frequency domain, time the frequency domain characteristic of vibration signals of multi angle Hilbert space characteristic entropy on different working conditions of wind turbine bearings were studied, summarized the wind turbine vibration signal of wind speed and load changes.
On this basis, the degree and status of fault bearing fault and gear box of wind turbine are studied. Given the bearing vibration model considering the influence of wind speed, time from time domain frequency domain, the different wind speed, normal bearing and bearing fault vibration signals were analyzed. The bearing vibration signal entropy the application of Hilbert spatial characteristics under different wind speeds were analyzed by comparing the normal bearing and the fault bearing vibration signal Hilbert spatial entropy change with wind speed curve, we can judge the bearing fault. Then using Hilbert spatial entropy method of on-line monitoring data a month before the bearing fault is analyzed, the results show that method can describe the change process of bearing fault degree effective quantitative, and according to the entropy point in the time, found that the wind turbine bearing earlier The fault is given. Calculation method of meshing frequency levels of transmission gearbox of wind turbine and the characteristic frequency of the gear, using the meshing frequency analysis method, the gear box of normal signals and fault signals. The results show that the method can effectively analyze the reasons for the failure of gear box, but can not reflect the degree of fault diagnosis, and the result is not intuitive, the process is more complicated. In order to reflect the operation state of gear box is more comprehensive, the application of Hilbert spatial entropy method for multi point measurement, the multi speed gear box, vibration signal of multi fault state of fusion analysis. To obtain the vibration signal of the gear box with the Hilbert space characteristic entropy measurement locations entropy plane speed changes, through the entropy plane compared with normal gear box and gearbox fault, can diagnose the fault of gearbox. By comparing the offline continuous test by The entropy value plane of the fault gear box is obtained, which shows that this method can quantitatively describe the change of the gear box fault degree and state.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程明;張運(yùn)乾;張建忠;;風(fēng)力發(fā)電機(jī)發(fā)展現(xiàn)狀及研究進(jìn)展[J];電力科學(xué)與技術(shù)學(xué)報(bào);2009年03期
2 安學(xué)利;蔣東翔;劉超;陳杰;;基于固有時(shí)間尺度分解的風(fēng)電機(jī)組軸承故障特征提取[J];電力系統(tǒng)自動(dòng)化;2012年05期
3 郭東杰;王靈梅;郭紅龍;武衛(wèi)紅;韓西貴;;改進(jìn)小波結(jié)合BP網(wǎng)絡(luò)的風(fēng)力發(fā)電機(jī)故障診斷[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2012年02期
4 魏青;葉安麗;馬鴻雁;;基于ZigBee的風(fēng)力發(fā)電機(jī)齒輪箱故障診斷系統(tǒng)[J];北京建筑工程學(xué)院學(xué)報(bào);2012年03期
5 時(shí)維俊;馬宏忠;;雙饋風(fēng)力發(fā)電機(jī)軸承的早期診斷[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2012年06期
6 劉明;張新燕;王維慶;孟瑞龍;;風(fēng)力發(fā)電機(jī)組故障振動(dòng)信號(hào)特征向量的提取[J];電力學(xué)報(bào);2012年06期
7 陳文靜;吳金強(qiáng);;Hilbert-Huang變換在風(fēng)力發(fā)電機(jī)主軸軸承故障診斷中的應(yīng)用[J];軸承;2013年06期
8 ;全球風(fēng)電市場(chǎng)發(fā)展報(bào)告2012[J];風(fēng)能;2013年04期
9 姚亞夫;張星;;基于瞬時(shí)能量熵和SVM的滾動(dòng)軸承故障診斷[J];電子測(cè)量與儀器學(xué)報(bào);2013年10期
10 陳長(zhǎng)征;周洋;;基于MSP430的風(fēng)力發(fā)電機(jī)振動(dòng)監(jiān)測(cè)系統(tǒng)[J];信息技術(shù);2010年03期
相關(guān)博士學(xué)位論文 前5條
1 曲弋;MW級(jí)風(fēng)力發(fā)電機(jī)組關(guān)鍵部件振動(dòng)分析與故障診斷方法研究[D];沈陽(yáng)工業(yè)大學(xué);2012年
2 楊軍;風(fēng)力發(fā)電機(jī)行星齒輪傳動(dòng)系統(tǒng)變載荷激勵(lì)動(dòng)力學(xué)特性研究[D];重慶大學(xué);2012年
3 蔣澤甫;風(fēng)電轉(zhuǎn)換系統(tǒng)可靠性評(píng)估及其薄弱環(huán)節(jié)辨識(shí)[D];重慶大學(xué);2012年
4 郭艷平;面向風(fēng)力發(fā)電機(jī)組齒輪箱滾動(dòng)軸承故障診斷的理論與方法研究[D];浙江大學(xué);2012年
5 辛衛(wèi)東;風(fēng)電機(jī)組傳動(dòng)鏈振動(dòng)分析與故障特征提取方法研究[D];華北電力大學(xué);2013年
本文編號(hào):1657251
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1657251.html