銅錫硫和銅鋅錫硫半導(dǎo)體光伏材料的制備及表征
發(fā)布時(shí)間:2018-03-22 16:16
本文選題:薄膜太陽(yáng)能電池 切入點(diǎn):銅錫硫 出處:《電子科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:銅錫硫(Cu2SnS3, CTS)和銅鋅錫硫(Cu2ZnSnS4, CZTS)是一類典型的多元化合物半導(dǎo)體光伏材料,它們憑借自身的p型導(dǎo)電特性、與太陽(yáng)輻射匹配的禁帶寬度、在可見(jiàn)光區(qū)域的高吸收系數(shù)、豐富無(wú)毒的元素特性等優(yōu)點(diǎn),成為薄膜太陽(yáng)能電池吸收層材料領(lǐng)域的重點(diǎn)研究對(duì)象。但現(xiàn)階段的實(shí)驗(yàn)室制備技術(shù)仍不能得到結(jié)晶性能特別良好的薄膜,工藝參數(shù)仍有待改進(jìn)。本論文針對(duì)上述Cu2SnS3和Cu2ZnSnS4薄膜制備研究中出現(xiàn)的問(wèn)題和挑戰(zhàn),以制備出具有柱狀晶粒的Cu2SnS3薄膜為主要目的,探索研究了采用不同前驅(qū)體結(jié)構(gòu)的Cu2SnS3制備技術(shù),優(yōu)化了硫化退火工藝條件;以適應(yīng)大規(guī)模生產(chǎn)技術(shù)為目的,探索了電沉積法制備Cu2ZnSnS4的實(shí)驗(yàn)條件。本論文的具體研究?jī)?nèi)容如下:(1)采用Cu/Sn疊層結(jié)構(gòu)金屬前驅(qū)體硫化退火的方法,制備出具有柱狀晶粒的Cu2SnS3薄膜;研究了前驅(qū)體硫化退火時(shí)出現(xiàn)的Sn元素流失問(wèn)題,發(fā)現(xiàn)了Cu2SnS3薄膜生長(zhǎng)過(guò)程中的Cu/Sn比例自適應(yīng)現(xiàn)象;提出了通過(guò)選擇具有恰當(dāng)Cu/Sn比例(略小于2.00)的前驅(qū)體,來(lái)避免硫化退火時(shí)出現(xiàn)Sn流失現(xiàn)象的解決方案。(2)嘗試采用Cu/Sn比例為1.88的Cu-Sn合金單靶,濺射制備出Cu/Sn比例一定(約為2.00)的Cu-Sn合金前驅(qū)體,其硫化退火后成功制備出了Cu2SnS3薄膜;該制備路徑的高溫(≥450℃)熱處理過(guò)程中,沒(méi)有出現(xiàn)Sn流失現(xiàn)象;通過(guò)增加預(yù)退火步驟和長(zhǎng)時(shí)間(18 h)低溫(250℃)條件下S氣氛擴(kuò)散步驟,得到了具有柱狀大晶粒的Cu2SnS3薄膜;通過(guò)控制退火時(shí)硫源和硒源的比例,可控地調(diào)節(jié)了Cu2Sn(S,Se)3薄膜中的S/Se比例,實(shí)現(xiàn)了Cu2Sn(S,Se)3薄膜禁帶寬度可調(diào)的目標(biāo);成功在Mo電極層上完成該路徑的Cu2SnS3薄膜制備,為進(jìn)一步制備Cu2SnS3薄膜太陽(yáng)能電池器件做好了準(zhǔn)備。(3)提出“采用Cu金屬單質(zhì)層作為前驅(qū)體,氣相引入Sn、S元素制備Cu2SnS3薄膜”的實(shí)驗(yàn)思路,并驗(yàn)證了該制備路徑的可行性,在一定程度上簡(jiǎn)化了前驅(qū)體制備時(shí)間,開(kāi)辟Cu2SnS3薄膜制備的新途徑。(4)得到了一套采用電沉積法硫化退火制備Cu2ZnSnS4薄膜的工藝技術(shù),為今后在大規(guī)模生產(chǎn)中采用電沉積法制備目標(biāo)薄膜積累了寶貴的經(jīng)驗(yàn)。
[Abstract]:Cu2SnS3 (CTS) and CuZnSnS4 (CZTS) are a kind of typical multicomponent compound semiconductor photovoltaic materials. They have high absorption coefficient in visible region by their own p-type conductivity, band gap matching with solar radiation. Rich in nontoxic elemental properties and other advantages, it has become an important research object in the field of absorbing layer materials for thin film solar cells. The process parameters still need to be improved. Aiming at the problems and challenges in the preparation of Cu2SnS3 and Cu2ZnSnS4 thin films mentioned above, the preparation of Cu2SnS3 films with columnar grains is the main purpose of this paper, and the preparation technology of Cu2SnS3 with different precursor structures is explored. The technological conditions of vulcanization annealing were optimized, and the experimental conditions for preparing Cu2ZnSnS4 by electrodeposition were explored in order to adapt to the large-scale production technology. The specific research contents of this paper are as follows: 1) the method of vulcanization annealing of metal precursor with Cu/Sn laminated structure is adopted. Cu2SnS3 thin films with columnar grains were prepared, and Sn loss during vulcanization annealing of precursors was studied, and the Cu/Sn proportional adaptive phenomenon in the growth of Cu2SnS3 films was found. A solution to avoid Sn loss in vulcanization annealing by selecting precursors with proper Cu/Sn ratio (slightly less than 2.00) is proposed. The single target of Cu-Sn alloy with Cu/Sn ratio of 1.88 is tried. The precursor of Cu-Sn alloy with a certain proportion of Cu/Sn (about 2.00) was prepared by sputtering, and the Cu2SnS3 film was successfully prepared after vulcanization annealing, and no Sn loss occurred during the high temperature (鈮,
本文編號(hào):1649414
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1649414.html
最近更新
教材專著