天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

特高壓直流輸電換相失敗特性研究

發(fā)布時間:2018-03-05 15:24

  本文選題:特高壓直流(UHVDC) 切入點:暫態(tài)過程 出處:《昆明理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著社會經(jīng)濟的迅速發(fā)展,人們對于電力的需求也在日益增加。我國雖地域遼闊,但電力能源的分布與電力負(fù)荷需求區(qū)域的分布卻極不平衡,為了實現(xiàn)資源的合理利用以及能源的優(yōu)化供應(yīng),發(fā)展遠距離、大容量的交直流混合輸電系統(tǒng)成為了發(fā)展的必然趨勢。特高壓直流輸電系統(tǒng)不僅在遠距離、大容量輸電方面較交流輸電系統(tǒng)具有明顯的優(yōu)勢,而且其控制方式也靈活方便,有利于電力系統(tǒng)的穩(wěn)定運行。特高壓直流輸電線路由于其電壓等級高,往往需要跨越大量的山地丘陵等復(fù)雜的環(huán)境,故其線路發(fā)生短路故障的概率就較高。 為了研究特高壓直流輸電換相失敗的特性,本文首先介紹并分析了特高壓直流輸電系統(tǒng)的控制特性,在此基礎(chǔ)上,利用云廣±800kV特高壓直流輸電工程實際參數(shù)以及PSCAD仿真平臺建立仿真模型,通過對特高壓直流輸電系統(tǒng)不同故障點的暫態(tài)控制特性進行仿真和分析,驗證了其模型的準(zhǔn)確性。 換相失敗是特高壓直流輸電系統(tǒng)常見的故障之一。本文詳細分析了換流站逆變側(cè)發(fā)生換相失敗的機理、原因、以及影響因素,提出了一些防止特高壓直流輸電系統(tǒng)發(fā)生換相失敗的預(yù)防措施,并對逆變側(cè)交流輸電系統(tǒng)發(fā)生各種類型的短路故障進行了仿真分析。其結(jié)果表明:逆變側(cè)的交流母線發(fā)生各種不同類型的金屬性接地故障時,逆變側(cè)均會發(fā)生換相失敗。隨著接地過渡電阻的增加,各故障電氣量的變化幅度會減小,當(dāng)過渡電阻達到臨界換相失敗電阻值時,逆變側(cè)將不會發(fā)生換相失敗。當(dāng)故障切除后,直流系統(tǒng)均能很快恢復(fù)至正常狀態(tài)。 直流系統(tǒng)逆變側(cè)發(fā)生換相失敗后,在系統(tǒng)的調(diào)節(jié)以及恢復(fù)的過程中不僅會產(chǎn)生大量的諧波分量,而且可能會造成交流系統(tǒng)線路發(fā)生暫態(tài)功率倒向,這都將對交流系統(tǒng)的保護產(chǎn)生影響,本文對暫態(tài)功率倒向現(xiàn)象進行了特性分析及仿真,并針對換相失敗對交流系統(tǒng)產(chǎn)生的影響進行了分析,并提出了防止保護誤動的措施。
[Abstract]:With the rapid development of social economy, people's demand for electricity is increasing day by day. Although our country has a vast territory, the distribution of power energy and the distribution of power load demand region are very unbalanced. In order to realize the rational utilization of resources and the optimization of energy supply, the development of long-distance AC / DC hybrid transmission system with large capacity has become an inevitable trend. Large capacity transmission has obvious advantages over AC transmission system, and its control mode is also flexible and convenient, which is conducive to the stable operation of power system. It is often necessary to cross a large number of mountain hills and other complex environments, so the probability of short circuit fault is higher. In order to study the characteristics of UHVDC commutation failure, this paper first introduces and analyzes the control characteristics of UHVDC system. The simulation model is established by using the actual parameters of Yunguang 鹵800kV UHVDC transmission project and the PSCAD simulation platform. The simulation and analysis of transient control characteristics at different fault points of UHVDC system are carried out to verify the accuracy of the model. Commutation failure is one of the common faults in UHVDC transmission system. This paper analyzes in detail the mechanism, causes and influencing factors of commutation failure on inverter side of converter station. Some preventive measures to prevent the commutation failure of UHVDC transmission system are put forward. Simulation analysis of various types of short-circuit faults occurred in AC transmission system of inverter side shows that when various types of gold attribute grounding faults occur in AC busbar of inverter side, Commutation failure will occur in the inverter side. With the increase of the grounding transition resistance, the change of the electrical quantity of each fault will decrease. When the transition resistance reaches the critical value of the commutation failure resistance, the commutation failure will not occur in the inverter side. When the fault is removed, the commutation failure will not occur in the inverter side. DC systems can quickly return to normal condition. After commutation failure occurs in the inverter side of DC system, not only a large number of harmonic components will be produced in the adjustment and recovery process of the system, but also the transient power reversal of the AC system line may occur. All of these will affect the protection of AC system. This paper analyzes and simulates the transient power reverse phenomenon, analyzes the effect of commutation failure on AC system, and puts forward some measures to prevent the protection from maloperation.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM721.1

【參考文獻】

相關(guān)期刊論文 前10條

1 楊汾艷,徐政;直流輸電系統(tǒng)典型暫態(tài)響應(yīng)特性分析[J];電工技術(shù)學(xué)報;2005年03期

2 韓英鐸,姜齊榮,謝小榮,沈斐;從美加大停電事故看我國電網(wǎng)安全穩(wěn)定對策的研究[J];電力設(shè)備;2004年03期

3 高錫明,張鵬,賀智;直流輸電線路保護行為分析[J];電力系統(tǒng)自動化;2005年14期

4 劉之堯;唐卓堯;張文峰;黃明輝;段新輝;趙曼勇;張弛;張哲;;直流換相失敗引起繼電保護誤動分析[J];電力系統(tǒng)自動化;2006年19期

5 王鋼;李志鏗;李海鋒;;±800kV特高壓直流線路暫態(tài)保護[J];電力系統(tǒng)自動化;2007年21期

6 黃志嶺;田杰;;基于詳細直流控制系統(tǒng)模型的EMTDC仿真[J];電力系統(tǒng)自動化;2008年02期

7 朱韜析;武誠;王超;;交流系統(tǒng)故障對直流輸電系統(tǒng)的影響及改進建議[J];電力系統(tǒng)自動化;2009年01期

8 李海鋒;張璞;王鋼;朱革蘭;趙曼勇;周紅陽;趙有鋮;;直流饋入下的工頻變化量方向縱聯(lián)保護動作特性分析 (二)故障線路的方向保護[J];電力系統(tǒng)自動化;2009年10期

9 李海鋒;張璞;王鋼;朱革蘭;趙曼勇;丁曉兵;;直流饋入下的工頻變化量方向縱聯(lián)保護動作特性分析 (三)非故障線路的方向保護[J];電力系統(tǒng)自動化;2009年11期

10 李愛民;蔡澤祥;李曉華;劉永浩;;高壓直流輸電線路行波保護影響因素分析及改進[J];電力系統(tǒng)自動化;2010年10期

,

本文編號:1570810

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1570810.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9aea5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com