中國燃煤電廠二氧化碳排放量計算方法研究
本文關鍵詞: 二氧化碳 BP神經(jīng)網(wǎng)絡 計算方法 燃煤電廠 出處:《北京交通大學》2014年碩士論文 論文類型:學位論文
【摘要】:氣候變化已成為各國進行政治、經(jīng)濟和文化博弈的重要議題。因溫室效應引起的環(huán)境問題逐漸引起了人們的關注。為全面控制二氧化碳等溫室氣體的排放,以緩解氣候變暖給人類經(jīng)濟和社會帶來的不利影響,國際各國開始紛紛采取行動——約束排放和減少排放,共同為應對氣候變化做出努力。 控制減排的首要環(huán)節(jié)是了解當下二氧化碳排放情況。電力行業(yè)是二氧化碳主要排放行業(yè)之一,國際上雖然已經(jīng)有大量關于燃煤電廠二氧化碳排放量計算的方法研究,但大多是依據(jù)各自國家的煤炭統(tǒng)計數(shù)據(jù)、電力設備運行狀況等設計的。我國煤炭分布不均,質量參差不齊,其質量對于發(fā)電設備影響極大。而且,電力相關統(tǒng)計資料并不完善,電力運行工況與國外相比存在較大差異,若直接套用國際現(xiàn)有方法,必然會與真實值之間存在很大誤差。由于國外的方法學理念較為完善,因此借鑒國外方法建立符合中國國情的燃煤電廠二氧化碳排放計算方法是一種省時省力又較準確的計算方法。 本文深入探討了我國煤炭質量情況及其對發(fā)電性能的影響。首先,我國煤炭分布情況及煤炭質量特征顯示我國煤炭資源分布不均,地區(qū)間煤炭質量差異較大,且煤炭指標如灰分、硫分、揮發(fā)分等指標數(shù)據(jù)與國外指標存在顯著差異。而且,煤炭資源分布與消費分布極不協(xié)調,江蘇、浙江、山東、廣東等需求量較高的地區(qū)煤炭資源卻較為貧瘠,致使電煤供應成為制約電煤質量的一大因素;這些地區(qū)實際用煤質量波動較大,多不符合設計煤質要求。本文選擇10家典型電廠作為主要研究對象,分別從煤炭發(fā)熱量、灰分、硫分、水分等煤質指標入手,分析其對發(fā)電設備的影響,結果顯示《IPCC指南》中的缺省系數(shù)無法直接應用于我國電廠二氧化碳排放計算中 為了更準確的建立我國燃煤電廠二氧化碳排放量的計算方法,本文結合電廠設備運行理論,通過工業(yè)分析數(shù)據(jù)(全水分Mar、收到基灰分Aar、收到基揮發(fā)分Var、固定碳FCar四個數(shù)據(jù))預測收到基含碳量Car,繼而通過鍋爐燃燒理論,得出燃煤發(fā)電過程和脫硫過程的計算公式。 在工業(yè)分析數(shù)據(jù)預測收到基含碳量Car時,采用BP神經(jīng)網(wǎng)絡的非線性映射特征,利用Matlab建立可通過工業(yè)分析數(shù)據(jù)(全水分Mar、收到基灰分Aar、收到基揮發(fā)分Var、固定碳FCar)預測Car的神經(jīng)網(wǎng)絡模型。通過網(wǎng)絡學習與優(yōu)化,最終使得學習后的數(shù)據(jù)預測值的相對誤差絕對值為0.602%,新數(shù)據(jù)預測結果的相對誤差絕對值平均可降低至2.827%。 為了驗證上述計算方法的準確性,以江蘇某發(fā)電廠為例,利用BP神經(jīng)網(wǎng)絡模型預測,收到基平均值Car的相對誤差可降至0.24%,通過計算,該燃煤電廠固定源二氧化碳排放量為4.923×106t/n。利用《2006IPCC指南》中提供的缺省因子計算所得二氧化碳排放量為5.244×106t/n,高于電廠實際二氧化碳排放量6.5個百分點。
[Abstract]:Climate change has become an important issue in the political, economic and cultural game between countries. The environmental problems caused by Greenhouse Effect have gradually attracted people's attention. In order to comprehensively control greenhouse gas emissions such as carbon dioxide, In order to mitigate the adverse effects of global warming on human economy and society, international countries have begun to take actions to curb emissions and reduce emissions, and make joint efforts to deal with climate change. The first step in controlling emission reduction is to understand the current situation of carbon dioxide emissions. The power industry is one of the major carbon dioxide emission industries. Although there has been a lot of international research on the calculation methods of carbon dioxide emissions from coal-fired power plants, However, most of them are designed on the basis of the coal statistics of their respective countries and the operation status of power equipment. The distribution of coal in China is uneven, the quality of coal is uneven, and the quality of coal has a great impact on the power generation equipment. Moreover, the statistical data related to electricity are not perfect. There is a great difference between the operating conditions of electric power and foreign countries. If the existing international methods are applied directly, there is bound to be a great error between the actual value and the actual value. Therefore, it is a time-saving and labor-saving and accurate calculation method to establish the calculation method of carbon dioxide emissions of coal-fired power plants in accordance with China's national conditions by using foreign methods for reference. In this paper, the coal quality in China and its influence on power generation performance are discussed. Firstly, the coal distribution and coal quality characteristics in China show that the distribution of coal resources in China is uneven, and the coal quality varies greatly among regions. And the coal index such as ash, sulfur, volatile matter and so on index data have the remarkable difference with the foreign index, moreover, the coal resources distribution and the consumption distribution are extremely inharmonious, Jiangsu, Zhejiang, Shandong, The coal resources in high demand areas such as Guangdong are relatively poor, resulting in the supply of thermal coal becoming a major factor restricting the quality of thermal coal, and the actual quality of coal used in these areas fluctuates greatly. In this paper, 10 typical power plants are selected as the main research objects, starting with coal calorific value, ash content, sulphur content, moisture content and so on, the influence of coal quality on power generation equipment is analyzed. The results show that the default coefficient in IPCC Guide can not be directly applied to the calculation of carbon dioxide emissions from power plants in China. In order to establish a more accurate calculation method of carbon dioxide emissions from coal-fired power plants in China, this paper combines the operation theory of power plant equipment, Based on the data of industrial analysis (all moisture, received base ash, base ash, base volatile, fixed carbon FCar), the basic carbon content Carr is predicted, and the calculation formula of coal-fired power generation process and desulfurization process is obtained through boiler combustion theory. When the base carbon content (Car) is predicted by the industrial analysis data, the nonlinear mapping feature of BP neural network is used. A neural network model for predicting Car by industrial analysis data (total moisture Marr, received base ash Aarus, received base volatile matter Vara, fixed carbon FCars) was established by using Matlab. Finally, the absolute value of the relative error of the predicted data after learning is 0.602, and the absolute value of the relative error of the new data can be reduced to 2.827 on average. In order to verify the accuracy of the above calculation methods, taking a power plant in Jiangsu province as an example, the relative error of the base average Car can be reduced to 0.24 by using BP neural network model. The fixed source carbon dioxide emission of the coal-fired power plant is 4.923 脳 10 ~ (6) t / n. using the default factors provided in the 2006 IPCC guidelines, the calculated carbon dioxide emissions are 5.244 脳 10 ~ (6) t / n, which is 6.5 percentage points higher than the actual carbon dioxide emissions of the power plant.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:X773
【參考文獻】
相關期刊論文 前10條
1 梅國棟,韓瑞國;鍋爐二氧化碳排放量的計算及其減少途徑[J];城市環(huán)境與城市生態(tài);2000年04期
2 劉強;莊幸;姜克雋;韓文科;;中國出口貿(mào)易中的載能量及碳排放量分析[J];中國工業(yè)經(jīng)濟;2008年08期
3 李建基;;電力行業(yè)如何應對全球變暖與溫室氣體[J];高科技與產(chǎn)業(yè)化;2009年05期
4 林伯強;蔣竺均;;中國二氧化碳的環(huán)境庫茲涅茨曲線預測及影響因素分析[J];管理世界;2009年04期
5 王婧;張旭;黃志甲;;基于LCA的建材生產(chǎn)能耗及污染物排放清單分析[J];環(huán)境科學研究;2007年06期
6 吳曉蔚;朱法華;周道斌;萬方;;2007年火電行業(yè)溫室氣體排放量估算[J];環(huán)境科學研究;2011年08期
7 齊中英;描述CO_2排放量的數(shù)學模型與影響因素的分解分析[J];技術經(jīng)濟;1998年03期
8 崔村麗;;我國煤炭資源及其分布特征[J];科技情報開發(fā)與經(jīng)濟;2011年24期
9 宗希寬;;《京都議定書》及其對中國的影響[J];科學決策;2007年11期
10 王華;王連華;葛嶺梅;;主成分分析與BP神經(jīng)網(wǎng)絡在煤耗氧速度預測中的應用[J];煤炭學報;2008年08期
,本文編號:1539895
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1539895.html