直驅(qū)電勵磁風電機組的直流側(cè)電壓波動抑制及低電壓穿越控制
發(fā)布時間:2018-02-14 09:25
本文關鍵詞: 風力發(fā)電 直驅(qū) 電勵磁 直流側(cè)電壓 電網(wǎng)故障 低電壓穿越 出處:《重慶大學》2015年碩士論文 論文類型:學位論文
【摘要】:當今世界能源安全問題日益突出,生態(tài)環(huán)境惡化日趨嚴重,風力發(fā)電作為一種相對成熟的清潔型可再生能源受到越來越重視,是解決能源問題的一種有效途徑。在各種風力發(fā)電機組中,直驅(qū)電勵磁同步風電機組由于其傳動系統(tǒng)簡單、避免采用昂貴的永磁材料、勵磁可調(diào)、發(fā)電效率高、運行可靠性好等優(yōu)點而受到廣泛關注。因此,本文以直驅(qū)電勵磁同步風電機組為研究對象,深入研究了抑制直流側(cè)電壓波動的控制策略,并對電網(wǎng)故障情況下機組的低電壓穿越進行了探討,主要內(nèi)容概括如下:①本文根據(jù)直驅(qū)電勵磁同步風電機組并網(wǎng)結(jié)構(gòu)特點,重點介紹了風力機、傳動系統(tǒng)、電勵磁同步電機、整流逆變環(huán)節(jié)等幾個主要模塊的工作原理和數(shù)學模型,為后續(xù)研究奠定了基礎。②提出了新型直流側(cè)電壓波動抑制策略。當風速突變時,采用傳統(tǒng)雙閉環(huán)控制策略的網(wǎng)側(cè)變流器不會及時改變并網(wǎng)輸出有功功率,直流側(cè)電壓出現(xiàn)大幅度波動,這將不利于電力電子器件和整個風電機組的穩(wěn)定運行。因此本文在分析直流側(cè)電壓波動產(chǎn)生機制的基礎上,針對直驅(qū)電勵磁風電機組提出了考慮直流電壓偏差信息的直流電壓波動抑制策略。在風速突變時,基于最大風能跟蹤控制的網(wǎng)側(cè)變流器在直流電壓偏差信息的補償作用下及時改變并網(wǎng)輸出有功功率,穩(wěn)定直流側(cè)電壓。仿真分析表明,本文所提控制策略在風速突變時能夠有效抑制直流電壓波動。③設計了基于風電機組慣性儲能的低電壓穿越控制策略。為了提高基于不可控整流器-可控逆變器并網(wǎng)的直驅(qū)電勵磁風電機組低電壓穿越能力,詳細分析了基于直流側(cè)卸荷電路的常規(guī)低電壓穿越控制策略的不足,進而設計了基于風電機組慣性儲能的低電壓穿越控制策略。在電網(wǎng)故障期間,該控制策略限制發(fā)電機電磁功率,使得大部分不平衡功率由發(fā)電機轉(zhuǎn)子承擔;并根據(jù)電網(wǎng)電壓跌落深度,網(wǎng)側(cè)變流器給電網(wǎng)提供一定的無功功率,支持電網(wǎng)恢復。以兩種不同深度的電網(wǎng)電壓跌落故障為例,對本文所提控制策略和基于卸荷電路的常規(guī)低電壓穿越方法進行仿真對比,仿真結(jié)果表明,本文所提控制策略能使機組在電網(wǎng)故障下的運行性能得到有效改善。
[Abstract]:Nowadays, the problem of energy security in the world is becoming more and more prominent, and the ecological environment is getting worse and worse. Wind power, as a relatively mature clean renewable energy, has been paid more and more attention. It is an effective way to solve the problem of energy. Among all kinds of wind turbines, direct-drive synchronous wind turbines avoid expensive permanent magnetic materials, adjustable excitation and high generation efficiency because of their simple transmission system. Therefore, the direct drive synchronous wind turbine is taken as the research object, and the control strategy to restrain the DC side voltage fluctuation is deeply studied in this paper. The main contents are summarized as follows: 1 according to the characteristics of direct-drive excitation synchronous wind turbine grid-connected structure, this paper mainly introduces wind turbine, transmission system, electric excitation synchronous motor. The working principle and mathematical model of several main modules, such as rectifier inverter, have laid a foundation for further research. 2. A novel DC side voltage fluctuation suppression strategy is proposed. The grid-side converter with traditional double-closed-loop control strategy will not change the active power of grid-connected power in time, and the DC side voltage will fluctuate greatly. This will be unfavorable to the stable operation of the power electronic devices and the whole wind turbine. Therefore, based on the analysis of the generation mechanism of DC side voltage fluctuation, In this paper, a DC voltage fluctuation suppression strategy considering DC voltage deviation information is proposed for direct-drive excited wind turbine. Under the compensation of DC voltage deviation information, the grid-side converter based on maximum wind energy tracking control can change the active power and stabilize the DC side voltage in time. The control strategy proposed in this paper can restrain DC voltage fluctuation effectively when wind speed changes. 3. A low voltage traversing control strategy based on wind turbine inertial energy storage is designed. The low voltage traversing ability of direct-drive excitation wind turbine in the grid, The deficiency of conventional low-voltage traversing control strategy based on DC side unloading circuit is analyzed in detail, and then a low-voltage traversing control strategy based on wind turbine inertia energy storage is designed. The control strategy limits the electromagnetic power of the generator, making most of the unbalanced power borne by the generator rotor, and according to the voltage drop depth of the power grid, the grid-side converter provides a certain reactive power to the power grid. The control strategy proposed in this paper is compared with the conventional low-voltage traversing method based on unloading circuit. The simulation results show that, The control strategy proposed in this paper can effectively improve the operation performance of generating units under power network failure.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TM315
【參考文獻】
相關期刊論文 前2條
1 劉其輝;賀益康;張建華;;交流勵磁變速恒頻風力發(fā)電機并網(wǎng)控制策略[J];電力系統(tǒng)自動化;2006年03期
2 樊艷芳;電壓不平衡與風電廠運行之間相互影響的研究[J];電力系統(tǒng)及其自動化學報;2002年04期
相關博士學位論文 前1條
1 張慧妍;超級電容器直流儲能系統(tǒng)分析與控制技術的研究[D];中國科學院研究生院(電工研究所);2006年
相關碩士學位論文 前1條
1 馬義林;自耦式12脈沖整流電路的研究[D];南京航空航天大學;2009年
,本文編號:1510382
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1510382.html