碳化硅功率器件在永磁同步電機(jī)驅(qū)動(dòng)器中的應(yīng)用研究
本文關(guān)鍵詞: 碳化硅 永磁同步電機(jī) MOSFET 橋臂串?dāng)_ 串?dāng)_抑制 出處:《南京航空航天大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:電動(dòng)汽車、航空、航天、電力牽引、家電等領(lǐng)域的飛速發(fā)展對(duì)永磁同步電機(jī)驅(qū)動(dòng)器提出了更高的要求,希望其具有更高的效率、更高的功率密度以及更高的可靠性。功率器件是電機(jī)驅(qū)動(dòng)系統(tǒng)的主要組成部分,對(duì)其效率、功率密度和可靠性起著主導(dǎo)作用。與傳統(tǒng)基于硅半導(dǎo)體材料的功率器件相比,新興碳化硅功率器件具有開關(guān)速度快、阻斷電壓高和耐高溫工作能力強(qiáng)等優(yōu)點(diǎn),由此可預(yù)見利用碳化硅功率器件設(shè)計(jì)的電機(jī)驅(qū)動(dòng)器能提高永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)的效率、功率密度以及動(dòng)態(tài)性能。隨著碳化硅功率器件制造技術(shù)的不斷發(fā)展和成熟,其在永磁同步電機(jī)驅(qū)動(dòng)器中的應(yīng)用研究受到研究人員越來越多的關(guān)注。永磁同步電機(jī)由于其具有結(jié)構(gòu)緊湊、效率高、調(diào)速性能好等優(yōu)點(diǎn)被廣泛應(yīng)用于電動(dòng)汽車、航空、航天、電力牽引、家電等領(lǐng)域。本文首先對(duì)永磁同步電機(jī)的結(jié)構(gòu)進(jìn)行簡單介紹,闡述了坐標(biāo)變換的原理,給出了永磁同步電機(jī)在坐標(biāo)變換后的數(shù)學(xué)模型,分析了電壓矢量控制的基本原理,介紹了PMSM中空間矢量作用的時(shí)間計(jì)算方法。與傳統(tǒng)的硅半導(dǎo)體相比,碳化硅半導(dǎo)體的材料特性存在較大優(yōu)勢(shì),因而碳化硅功率器件比傳統(tǒng)的硅功率器件具有更好地電氣特性,為了保證碳化硅功率器件的優(yōu)勢(shì)在永磁同步電機(jī)驅(qū)動(dòng)器中的充分發(fā)揮,使得基于碳化硅功率器件的永磁同步電機(jī)驅(qū)動(dòng)器能夠獲得更優(yōu)的性能,本文詳細(xì)分析了利用碳化硅功率器件可能帶來的實(shí)際應(yīng)用問題。電機(jī)驅(qū)動(dòng)器橋臂結(jié)構(gòu)電路中一個(gè)開關(guān)管快速開關(guān)瞬態(tài)產(chǎn)生的高電壓變化率(dv/dt)會(huì)影響其互補(bǔ)開關(guān)管的工作,引起串?dāng)_問題,導(dǎo)致額外的開關(guān)損耗甚至器件失效。本文重點(diǎn)討論Si C基高速開關(guān)給PMSM驅(qū)動(dòng)器帶來的一些關(guān)鍵問題,分析了電機(jī)驅(qū)動(dòng)器中橋臂串?dāng)_問題的產(chǎn)生機(jī)理及其危害,給出了電機(jī)驅(qū)動(dòng)器橋臂電路高頻串?dāng)_問題的特殊性,闡述了抑制串?dāng)_問題的方法并給出抑制實(shí)驗(yàn)效果。分析了高速開關(guān)下寄生電感對(duì)功率器件的安全工作的影響原理,給出開關(guān)速度提高對(duì)寄生參數(shù)容忍程度關(guān)系曲線,闡述了抑制寄生電感影響的方法并給出抑制的實(shí)驗(yàn)效果。最后,本文對(duì)PMSM驅(qū)動(dòng)器的功率器件進(jìn)行了損耗分析,指出了與硅功率器件相比,采用碳化硅功率器件所能取得的效率優(yōu)勢(shì),完成了輸出功率1k W的PMSM驅(qū)動(dòng)器實(shí)驗(yàn)樣機(jī)的設(shè)計(jì)制作,進(jìn)行了實(shí)驗(yàn)驗(yàn)證,并討論了保持相同效率時(shí),采用碳化硅功率器件對(duì)PMSM驅(qū)動(dòng)器的散熱系統(tǒng)體積/重量的減小。
[Abstract]:With the rapid development of electric vehicles, aviation, aerospace, electric traction, household appliances and other fields, PMSM drivers are required to have higher efficiency. Higher power density and higher reliability. Power device is the main component of motor drive system, for its efficiency. Compared with the traditional power devices based on silicon semiconductor materials, the new silicon carbide power devices have the advantages of fast switching speed, high blocking voltage and high temperature resistance. Therefore, it can be predicted that the motor driver designed by silicon carbide power device can improve the efficiency of the PMSM drive system. Power density and dynamic performance. With the continuous development and maturity of silicon carbide power device manufacturing technology. The application of PMSM in PMSM driver has attracted more and more attention. PMSM has been widely used in electric vehicles because of its compact structure, high efficiency and good speed regulation performance. In this paper, the structure of permanent magnet synchronous motor (PMSM) is introduced briefly, the principle of coordinate transformation is expounded, and the mathematical model of PMSM after coordinate transformation is given. The basic principle of voltage vector control is analyzed, and the time calculation method of space vector action in PMSM is introduced. Compared with the traditional silicon semiconductor, the material characteristics of silicon carbide semiconductor have great advantages. Therefore, silicon carbide power devices have better electrical characteristics than traditional silicon power devices, in order to ensure the advantages of silicon carbide power devices in permanent magnet synchronous motor driver. The PMSM driver based on sic power device can obtain better performance. In this paper, the practical application problems caused by the use of silicon carbide power devices are analyzed in detail. The high voltage change rate (dv / DT) generated by a fast switching switch in the bridge arm circuit of motor driver is discussed in detail. It will affect the work of its complementary switch. The crosstalk problem is caused, which leads to extra switching loss and even device failure. In this paper, some key problems brought by high speed switch based on sic to PMSM driver are discussed. The mechanism and harm of the crosstalk problem in the motor driver are analyzed, and the particularity of the high frequency crosstalk problem in the bridge arm circuit of the motor driver is given. The method of suppressing crosstalk problem is described and the experimental results are given. The principle of the influence of parasitic inductance on the safety of power device under high speed switch is analyzed. The curve of tolerance of switch speed to parasitic parameters is given, the method of restraining parasitic inductance is described and the experimental results are given. In this paper, the loss analysis of PMSM driver power device is carried out, and the efficiency advantage of silicon carbide power device compared with silicon power device is pointed out. The experimental prototype of 1kW PMSM driver with output power is designed and fabricated, and the experimental verification is carried out, and the same efficiency is discussed. Using silicon carbide power device to reduce the volume / weight of heat dissipation system of PMSM driver.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM341
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;一體化電機(jī)驅(qū)動(dòng)器的發(fā)展趨勢(shì)[J];工業(yè)設(shè)計(jì);2013年03期
2 ;伺服電機(jī)驅(qū)動(dòng)器的結(jié)構(gòu)組成[J];伺服控制;2009年06期
3 衣偉;毛書勤;;電機(jī)驅(qū)動(dòng)器裝配工藝技術(shù)[J];電子工藝技術(shù);2011年05期
4 段瑞昌;徐國卿;吳志紅;;車用電機(jī)驅(qū)動(dòng)器的電磁兼容性設(shè)計(jì)[J];電工技術(shù);2003年10期
5 殷蘇民;張平;高瑞強(qiáng);周青;;一體化永磁同步電機(jī)驅(qū)動(dòng)器的設(shè)計(jì)[J];化工自動(dòng)化及儀表;2011年07期
6 張文增,孫振國,曹一鵬,徐磊,張勇;機(jī)器人微型電機(jī)驅(qū)動(dòng)器的設(shè)計(jì)與實(shí)現(xiàn)[J];微特電機(jī);2004年02期
7 馬永泉;;新能源汽車牽引電機(jī)驅(qū)動(dòng)器關(guān)鍵零部件應(yīng)用淺析[J];新材料產(chǎn)業(yè);2011年08期
8 富歷新;石義彬;;電機(jī)驅(qū)動(dòng)器中故障檢測(cè)與保護(hù)電路的設(shè)計(jì)[J];黑龍江自動(dòng)化技術(shù)與應(yīng)用;1992年04期
9 周亞芹;李維嘉;趙勇剛;;交流伺服電機(jī)驅(qū)動(dòng)器的優(yōu)化控制研究[J];武漢理工大學(xué)學(xué)報(bào);2012年12期
10 伍巍;;交流伺服電機(jī)驅(qū)動(dòng)器通訊技術(shù)探討[J];硅谷;2010年04期
相關(guān)重要報(bào)紙文章 前3條
1 小武;13招處理打標(biāo)機(jī)復(fù)位不正常等故障[N];中國服飾報(bào);2011年
2 張徹鑫;AMI通用型電機(jī)驅(qū)動(dòng)器提高控制精度[N];中國紡織報(bào);2007年
3 吳正秀 黃怡煒;興大豪電控以創(chuàng)新迎接機(jī)電一體化[N];中國服飾報(bào);2005年
相關(guān)碩士學(xué)位論文 前10條
1 趙春陽;一種PWM電機(jī)驅(qū)動(dòng)器的電磁兼容分析與設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2016年
2 李勇;控制棒電機(jī)驅(qū)動(dòng)器設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2016年
3 聶新;碳化硅功率器件在永磁同步電機(jī)驅(qū)動(dòng)器中的應(yīng)用研究[D];南京航空航天大學(xué);2015年
4 楊磊;便攜式電機(jī)驅(qū)動(dòng)器全自動(dòng)測(cè)試裝置的研究[D];華中科技大學(xué);2009年
5 唐晨;電機(jī)驅(qū)動(dòng)器測(cè)試工裝的研制[D];吉林大學(xué);2011年
6 夏烈;一體化永磁同步電機(jī)驅(qū)動(dòng)器設(shè)計(jì)[D];南京理工大學(xué);2007年
7 王宇翔;交流電機(jī)驅(qū)動(dòng)器若干實(shí)際問題的研究[D];浙江大學(xué);2015年
8 馮愷侃;低壓永磁同步電機(jī)驅(qū)動(dòng)器設(shè)計(jì)與研制[D];上海交通大學(xué);2010年
9 宋文峰;新型直線電機(jī)驅(qū)動(dòng)器的研究[D];國防科學(xué)技術(shù)大學(xué);2003年
10 張峗;能量回饋型加載電機(jī)驅(qū)動(dòng)器的研究[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):1476710
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1476710.html