水輪機調(diào)節(jié)系統(tǒng)非線性建模及動力學(xué)分析
本文關(guān)鍵詞:水輪機調(diào)節(jié)系統(tǒng)非線性建模及動力學(xué)分析 出處:《西北農(nóng)林科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 水輪機調(diào)節(jié)系統(tǒng) 非線性分析 Hopf分岔 數(shù)學(xué)建模 動力學(xué)行為
【摘要】:水輪機調(diào)節(jié)系統(tǒng)是一個多輸入、多輸出系統(tǒng),同時包括水力、電氣和機械部分,具有非最小相位調(diào)節(jié)和強非線性特點,其組成結(jié)構(gòu)和控制過程都十分復(fù)雜。水輪機調(diào)節(jié)系統(tǒng)直接關(guān)系到水電站機組的安全穩(wěn)定運行,一直是工程技術(shù)人員和科研學(xué)者關(guān)注的熱點領(lǐng)域之一。 本文系統(tǒng)地總結(jié)了水輪機調(diào)節(jié)系統(tǒng)的調(diào)節(jié)過程特點以及組成結(jié)構(gòu),將總的調(diào)節(jié)系統(tǒng)分為水輪機、發(fā)電機、調(diào)速器和水力系統(tǒng)等四個子系統(tǒng)并分別介紹了四個子系統(tǒng)各自的特點、組成以及常用的數(shù)學(xué)模型。在各子系統(tǒng)模型基礎(chǔ)上,根據(jù)研究內(nèi)容的側(cè)重點分別建立了引水管道為復(fù)雜管系時的非線性水輪機調(diào)節(jié)系統(tǒng)模型、考慮飽和輸出時存在接力器輸出限幅環(huán)節(jié)的非線性水輪機調(diào)節(jié)系統(tǒng)模型以及考慮設(shè)置有調(diào)壓室的非線性水輪機調(diào)節(jié)系統(tǒng)模型,同時建立了基于Matlab/Simulink的非線性水輪機調(diào)節(jié)系統(tǒng)仿真模型。 運用非線性動力學(xué)理論知識,如Hopf分岔理論、李雅普諾夫(Lyapunov)指數(shù)判據(jù)、龐加萊(Poincare)映射等,著重分析了調(diào)速器PID參數(shù)改變時調(diào)節(jié)系統(tǒng)的非線性動力學(xué)行為以及參數(shù)對系統(tǒng)穩(wěn)定性的影響。通過仿真計算得到系統(tǒng)的分岔圖(Bifurcationdiagram)、時域圖(Time Domain)、相軌跡圖(Phase Trajectory)、龐加萊映射圖(Poincaremap)、功率譜圖(Power spectrum)和李雅普諾夫(Lyapunov)指數(shù),并利用Simulink軟件對水輪機調(diào)節(jié)系統(tǒng)非線性模型進行了仿真。 使用直接代數(shù)Hopf分岔判據(jù)理論,可以得到水輪機調(diào)節(jié)系統(tǒng)調(diào)節(jié)PID參數(shù)的穩(wěn)定域。判據(jù)經(jīng)過坐標變換和計算,得到由系統(tǒng)Hopf臨界分岔點所組成的曲線,由Hopf分岔臨界點曲線并結(jié)合系統(tǒng)的時域變化圖、相空間軌跡以及分岔圖可以判斷調(diào)節(jié)系統(tǒng)的運動狀態(tài)和動力學(xué)發(fā)展趨勢,由此獲得系統(tǒng)PID參數(shù)的穩(wěn)定域。 基于Matlab/Simulink軟件包建立的水輪機調(diào)節(jié)系統(tǒng)數(shù)學(xué)模型可實時顯示系統(tǒng)的仿真結(jié)果,還可以隨時調(diào)整系統(tǒng)的仿真參數(shù),利于即時分析數(shù)據(jù),具有操作便利、直觀、快捷的特點。 在水輪機調(diào)節(jié)系統(tǒng)的建模與仿真過程中可以結(jié)合Matlab中Simulink軟件包與M文件各自特點,利用Matlab軟件的M文件可求解非線性微分方程組的分岔問題,,而在研究系統(tǒng)時域響應(yīng)時,可以使用Simulink軟件包,以便更真實、快捷、準確地得到系統(tǒng)模型的仿真結(jié)果。 本文的研究為水輪機調(diào)節(jié)系統(tǒng)建模與分析提供了一種方法,同時也為水電站的安全穩(wěn)定運行提供了理論依據(jù)。
[Abstract]:Hydraulic turbine regulation system is a multi-input, multi-output system, including hydraulic, electrical and mechanical parts, with non-minimum phase adjustment and strong nonlinear characteristics. Its composition structure and control process are very complex, and the governing system of hydraulic turbine is directly related to the safe and stable operation of hydropower units, and has always been one of the hot areas concerned by engineers and researchers. In this paper, the characteristics of the governing process and the structure of the governing system of the turbine are summarized systematically. The total governing system is divided into the turbine and the generator. Four subsystems, such as governor and hydraulic system, are introduced respectively, their respective characteristics, composition and commonly used mathematical models. On the basis of each subsystem model. According to the emphasis of the research, the nonlinear governing system model of hydraulic turbine is established when the diversion pipeline is a complex pipe system. The nonlinear governing system model of hydraulic turbine and the governing system model of nonlinear hydraulic turbine with surge chamber are presented in this paper. At the same time, the simulation model of nonlinear turbine governing system based on Matlab/Simulink is established. The nonlinear dynamics theory is used, such as Hopf bifurcation theory, Lyapunov Lyapunov-exponent criterion, Poincare mapping and so on. The nonlinear dynamic behavior of the governing system and the influence of the parameters on the stability of the system are analyzed when the PID parameters of the governor are changed. The bifurcation diagram of the system is obtained by simulation (. ). Time domain map, phase trajectoryn, Poincaremap. Power spectrum) and Lyapunov Lyapunovo index. The nonlinear model of hydraulic turbine governing system is simulated by Simulink software. Using the direct algebraic Hopf bifurcation criterion theory, the stable region of regulating PID parameters of hydraulic turbine regulating system can be obtained. The criterion is calculated by coordinate transformation. The curve composed of Hopf critical bifurcation point of the system is obtained, and the critical point curve of Hopf bifurcation is combined with the time-domain variation diagram of the system. The phase space trajectory and bifurcation diagram can be used to judge the motion state and dynamic development trend of the regulating system, and the stability region of the PID parameters of the system can be obtained. The mathematical model of hydraulic turbine regulation system based on Matlab/Simulink software package can display the simulation results in real time and adjust the simulation parameters at any time. It is easy to analyze the data in real time and has the advantages of convenient operation, intuitive and quick operation. In the process of modeling and simulation of hydraulic turbine regulation system, the characteristics of Simulink software package and M file in Matlab can be combined. The M file of Matlab software can be used to solve the bifurcation problem of nonlinear differential equations, and the Simulink software package can be used to study the time-domain response of the system in order to be more real and fast. The simulation results of the system model are obtained accurately. The research in this paper provides a method for modeling and analysis of turbine governing system, and also provides a theoretical basis for the safe and stable operation of hydropower stations.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TV734.1
【參考文獻】
相關(guān)期刊論文 前10條
1 衛(wèi)志農(nóng),陳劍光,潘學(xué)萍,鞠平,韓敬東;水機電系統(tǒng)相互作用研究[J];電力系統(tǒng)自動化;2000年24期
2 申健;金鈞;;電力系統(tǒng)仿真分析中幾種同步發(fā)電機數(shù)學(xué)模型的比選[J];電氣技術(shù);2007年09期
3 王華強;周章海;楊滁光;;基于單神經(jīng)元自適應(yīng)PID控制的水輪機調(diào)節(jié)系統(tǒng)研究[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2010年10期
4 鄂加強;王春華;彭雨;李娟;龔金科;朱浩;;混沌特性時間序列線性變換理論方法及其應(yīng)用[J];湖南大學(xué)學(xué)報(自然科學(xué)版);2009年02期
5 王健;杜慶余;;基于模糊策略的高速飛行器滑?刂坡稍O(shè)計[J];航天控制;2011年04期
6 ;Torque model of hydro turbine with inner energy loss characteristics[J];Science China(Technological Sciences);2010年10期
7 羅利軍;李銀山;李彤;董青田;;李雅普諾夫指數(shù)譜的研究與仿真[J];計算機仿真;2005年12期
8 閆慶華;程兆剛;段云龍;;AR模型功率譜估計及Matlab實現(xiàn)[J];計算機與數(shù)字工程;2010年04期
9 張海龍;閔富紅;王恩榮;;關(guān)于Lyapunov指數(shù)計算方法的比較[J];南京師范大學(xué)學(xué)報(工程技術(shù)版);2012年01期
10 季穎;畢勤勝;;分段線性混沌電路的非光滑分岔分析[J];物理學(xué)報;2010年11期
本文編號:1436409
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1436409.html