單相橋式整流濾波電路類負(fù)荷容性特性及衰減效應(yīng)研究
本文關(guān)鍵詞:單相橋式整流濾波電路類負(fù)荷容性特性及衰減效應(yīng)研究 出處:《重慶大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 諧波等效電路 容性特性 衰減效應(yīng) 波峰系數(shù) 位移系數(shù)
【摘要】:目前,單相橋式整流濾波電路類的非線性電力電子設(shè)備已越來越廣泛地分布于低壓配電系統(tǒng)中。該類負(fù)荷單個功率小,數(shù)量多,分布區(qū)域廣且諧波含量豐富。當(dāng)大量的諧波注入到配電系統(tǒng)中,造成供電電壓嚴(yán)重畸變,對配電系統(tǒng)中的負(fù)荷和附近的電子裝置造成危害。由于濾波電容的存在,使得電路可能呈容性,一方面對配電系統(tǒng)無功補償起一定的作用;另一方面也可能與系統(tǒng)電感將引發(fā)諧波諧振。本文基于單相橋式整流濾波電路的頻域諧波耦合導(dǎo)納矩陣模型,分別推導(dǎo)出該類電路的基波和諧波等效電路。并結(jié)合等效電路,通過理論分析,,仿真研究及實驗驗證了單相橋式整流濾波電路在各次諧波處的容、感性特性。并比較分析了諧波電流的衰減效應(yīng)與諧波電壓的波峰系數(shù)和位移系數(shù)的關(guān)系,通過實驗對這一關(guān)系進(jìn)行了驗證。具體工作如下: ①基于頻域諧波耦合導(dǎo)納矩陣模型,分別推導(dǎo)出理想電壓下的基波等效電路和畸變電壓下的諧波等效電路。 ②根據(jù)推導(dǎo)出的基波等效電路,通過理論分析基波等效導(dǎo)納的性質(zhì)及輸入端基波電流與電壓相位差的情況,說明了單相橋式整流濾波電路在基波處都呈容性且基波電流與電壓相位差較集中。并通過仿真和實驗驗證了該結(jié)論的正確性。另外,根據(jù)諧波等效電路,通過對其各支路電流特性的分析,研究了單相橋式整流濾波電路在各次諧波處的容、感性特性,并提出了使得電路在各次諧波處呈容性的負(fù)載等值電阻R的范圍,以此來規(guī)避諧波諧振的發(fā)生。 ③仿真分析了單相橋式整流濾波電路諧波電流的衰減(放大)效應(yīng)與諧波電壓的波峰系數(shù)和位移系數(shù)的關(guān)系。指出這兩種電壓波形指標(biāo)單獨用于反映衰減系數(shù)的誤差較大。提出了諧波電流的衰減(放大)效應(yīng)是波峰特性與位移特性共同作用的結(jié)果,且當(dāng)波峰系數(shù)和位移系數(shù)同時滿足時,衰減(放大)效應(yīng)的程度更嚴(yán)重,并通過實驗驗證了該結(jié)論。
[Abstract]:At present, the nonlinear power electronic equipment single-phase bridge rectifier filter circuit class has been more and more widely distributed in the low-voltage distribution system. The power load of the single small quantity, wide distribution and rich harmonic content. When a large number of harmonics injected into the power system, resulting in serious distortion of the supply voltage, the harm to the power system the load and the electronic device nearby. Due to the filter capacitor, the circuit may be capacitive, a reactive power compensation play a role in the distribution system; on the other hand, may also be a system inductance will lead to harmonic resonance. The frequency domain harmonic coupled admittance matrix model of the single-phase bridge rectifier filter circuit based on, respectively. This kind of circuit is the fundamental harmonic equivalent circuit. Combined with the equivalent circuit, through theoretical analysis, simulation and experimental verification of the single-phase bridge rectifier filter circuit The relation between the attenuation effect of harmonic current and the peak wave coefficient and displacement coefficient of harmonic voltage is compared and analyzed. The relationship is verified through experiments.
(1) based on the frequency domain harmonic coupling admittance matrix model, the equivalent circuit of the fundamental wave under the ideal voltage and the harmonic equivalent circuit under the distorted voltage are derived respectively.
According to the fundamental wave equivalent circuit is deduced, through theoretical analysis and properties of input fundamental voltage and current phase difference of the equivalent admittance, the single-phase bridge rectifier filter circuit is capacitive phase and fundamental current and voltage difference is concentrated on the fundamental place. And through the simulation and experimental results verify the correctness of the conclusion. In addition, according to the harmonic equivalent circuit, through the analysis of the current of each branch characteristics, research the single-phase bridge rectifier filter circuit in its harmonic content, perceptual characteristics, and puts forward that the circuit is capacitive load equivalent resistance R in the range of each harmonic, in order to avoid harmonic resonance the occurrence.
The simulation and analysis of the attenuation of single-phase bridge rectifier filter circuit harmonic current (amplification) relationship between wave coefficient and displacement coefficient and harmonic voltage. The two voltage waveform index is used to reflect the attenuation coefficient of single error. The attenuation of harmonic current is proposed (amplification) effect is the common wave characteristics and displacement characteristics the results, and when the wave crest coefficient and displacement coefficient at the same time, the attenuation (amplification) effect is more severe, and the conclusion is verified by experiment.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM461
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周國威;吳勝利;;電網(wǎng)中諧波的危害及消除高次諧波的方法[J];電力電容器;2006年02期
2 王兆安,劉進(jìn)軍;電力電子裝置諧波抑制及無功補償技術(shù)的進(jìn)展[J];電力電子技術(shù);1997年01期
3 馮士剛;艾芊;;一種諧波負(fù)荷建模的新方法[J];電力系統(tǒng)自動化;2007年17期
4 孫媛媛;王小宇;尹志明;;三相整流裝置諧波產(chǎn)生機理分析及簡化模型[J];電力系統(tǒng)自動化;2012年07期
5 皇金鋒;;單相橋式整流濾波電容的設(shè)計[J];電氣開關(guān);2007年03期
6 郎維川;供電系統(tǒng)諧波的產(chǎn)生、危害及其防護(hù)對策[J];高電壓技術(shù);2002年06期
7 石新春,霍利民;電力電子技術(shù)與諧波抑制[J];華北電力大學(xué)學(xué)報;2002年01期
8 成強,喻基生,張德權(quán);電子鎮(zhèn)流器諧波含量及功率因數(shù)研究[J];河南科學(xué);1997年04期
9 雍靜;胡杰;劉利萍;李建波;;建筑物電氣設(shè)備諧波故障分析[J];建筑電氣;2007年03期
10 鄭偉杰;徐文遠(yuǎn);;TCR非線性特性的線性耦合導(dǎo)納矩陣模型[J];中國電機工程學(xué)報;2008年01期
本文編號:1418243
本文鏈接:http://www.sikaile.net/kejilunwen/dianlilw/1418243.html