風(fēng)機(jī)齒輪箱多故障診斷問題研究
[Abstract]:With the development of wind power industry, more and more scientific researchers pay attention to the stable and safe operation and fault diagnosis of wind turbine. Gear box is an important component of fan transmission chain, it will be affected by many factors in operation, once the gear box failure, it may lead to the failure of fan transmission chain. Therefore, the research on fault diagnosis of gearbox is of great significance for maintaining the normal operation of fan. The main research content of this paper is multi-fault diagnosis of fan gearbox. In order to solve this problem, this paper puts forward two different solutions: 1, In this paper, a new blind source separation algorithm is proposed to solve the problem of multi-fault diagnosis of gearbox. The algorithm decomposes the blind source separation problem into two sub-problems, that is, the estimation of the number of source signals and the restoration of the source signals. The number of source signals is estimated by the combined empirical mode decomposition (empirical mode decomposition,EMD), singular value decomposition (singular value decomposition,SVD) and K-means (K-means) clustering algorithms. Then, the input signal is converted to time-frequency domain by short-time Fourier transform. Finally, the aliasing matrix is estimated by fuzzy C clustering, and the minimum L1 norm is used to recover the source signal. The experimental results clearly verify the effectiveness of the algorithm in dealing with the nonlinear multi-fault problem of gearbox. 2. Another method in this paper is the multi-fault diagnosis method based on support vector machine (support vector machine,SVM) probability estimation. The support vector machine (SVM) models for sensors installed in different locations of gearbox are established by this method. Each model outputs the probability that the sample belongs to each class, and the final diagnosis result is a synthesis of these probabilities. In order to improve the diagnostic rate of the model, the ensemble empirical mode decomposition (ensemble empirical mode decomposition,EEMD) is introduced to extract the features. The validity of the algorithm is verified by simulation data and real data.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 楊杰;俞文文;田昊;關(guān)珍貞;;基于獨(dú)立分量分析的欠定盲源分離方法[J];振動(dòng)與沖擊;2013年07期
2 龍泉;劉永前;楊勇平;;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電機(jī)組齒輪箱故障診斷方法[J];太陽能學(xué)報(bào);2012年01期
3 陳雪峰;李繼猛;程航;李兵;何正嘉;;風(fēng)力發(fā)電機(jī)狀態(tài)監(jiān)測和故障診斷技術(shù)的研究與進(jìn)展[J];機(jī)械工程學(xué)報(bào);2011年09期
4 唐新安;謝志明;王哲;吳金強(qiáng);;風(fēng)力機(jī)齒輪箱故障診斷[J];噪聲與振動(dòng)控制;2007年01期
5 李曉虎,賈民平,許飛云;頻譜分析法在齒輪箱故障診斷中的應(yīng)用[J];振動(dòng)、測試與診斷;2003年03期
6 陳忠,鄭時(shí)雄;基于經(jīng)驗(yàn)?zāi)J椒纸?EMD)的齒輪箱齒輪故障診斷技術(shù)研究[J];振動(dòng)工程學(xué)報(bào);2003年02期
7 鄭紅軍,周旭,畢篤彥;統(tǒng)計(jì)學(xué)習(xí)理論及支持向量機(jī)概述[J];現(xiàn)代電子技術(shù);2003年04期
8 楊江天,陳家驥,曾子平;基于高階譜的旋轉(zhuǎn)機(jī)械故障征兆提取[J];振動(dòng)工程學(xué)報(bào);2001年01期
,本文編號:2456616
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2456616.html