發(fā)電鍋爐飛灰含碳量軟測量建模及燃燒優(yōu)化運行研究
[Abstract]:With the rapid development of industrial production and social economy, the problem of energy saving and environmental protection has been paid more and more attention by human beings. Coal-fired boilers with thermal power not only consume a lot of energy, but also emit a large amount of exhaust gas and harmful smoke and dust, which cause serious pollution to the atmospheric environment. Therefore, the realization of efficient use of energy is an effective measure to achieve energy conservation and emission reduction in thermal power industry. The carbon content of fly ash is an important index to measure the combustion efficiency of thermal power boiler. At present, most domestic power production enterprises use manual sampling, sample making and laboratory chemical analysis to carry out off-line detection. For boiler combustion optimization engineering, it is difficult to achieve ideal operation effect by manual adjustment of fuel and air distribution only by virtue of operation experience, which leads to waste of energy. Therefore, it is of great engineering significance to carry out the research on this subject. Taking coal-fired boiler for power generation as an object, this paper analyzes the technological characteristics of boiler production process, introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion, and deeply analyzes the related factors affecting carbon content of fly ash, on the basis of which, the paper introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion. Based on the improved BP neural network algorithm, the prediction model of carbon content in fly ash is established, and the combustion condition of boiler is optimized according to a new swarm intelligent algorithm called wolf swarm algorithm. Finally, the effectiveness of the prediction model and combustion optimization method is verified by simulation and measured data, which has high engineering application value. The main contents of this paper are as follows: 1. Based on the survey of the current research situation at home and abroad, the process characteristics of combustion process in power generation coal-fired boilers are analyzed, and the factors affecting the carbon content of fly ash and the commonly used methods to reduce the carbon content of fly ash are summarized. 2. Aiming at the problem of sample error in prediction of carbon content in fly ash by BP neural network, the error function of neural network is improved, and it is verified that the neural network error function has a better inhibitory effect on the interference in input samples. 3. The neural network model is simplified by principal component analysis. Aiming at the problem that there are too many input variables in carbon measurement of fly ash, the contribution value of each input variable to the output variable is analyzed, and the input parameters of the network are selected. The prediction model of carbon content in fly ash based on BP neural network based on principal component analysis is designed and simulated and verified by experiments. 4. A boiler combustion optimization scheme based on wolf swarm algorithm is proposed. According to the prediction data of carbon content in fly ash, the combustion condition is optimized by using wolf swarm algorithm, and the most favorable control scheme is selected, and the simulation study is carried out.
【學位授予單位】:安徽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM621.2
【參考文獻】
相關期刊論文 前10條
1 薛俊杰;王瑛;李浩;肖吉陽;;一種狼群智能算法及收斂性分析[J];控制與決策;2016年12期
2 魏倩;蔡遠利;;J_2項攝動影響下的大氣層外彈道規(guī)劃改進算法[J];控制理論與應用;2016年09期
3 王東風;劉千;韓璞;趙文杰;;基于大數(shù)據(jù)驅動案例匹配的電站鍋爐燃燒優(yōu)化[J];儀器儀表學報;2016年02期
4 王富強;;基于逆向傳遞策略的直流鍋爐主汽溫網(wǎng)絡化預測控制[J];中國電機工程學報;2015年19期
5 禚真福;楊永建;樊曉光;王晟達;南建國;王久崇;;改進二分粒子群優(yōu)化算法的陣列方向圖綜合[J];系統(tǒng)工程與電子技術;2015年11期
6 吳虎勝;張鳳鳴;戰(zhàn)仁軍;李浩;梁曉龍;;利用改進的二進制狼群算法求解多維背包問題[J];系統(tǒng)工程與電子技術;2015年05期
7 陳智軒;盧子廣;胡立坤;彭宇寧;;汽包鍋爐汽輪機系統(tǒng)的非線性σ校正復合模型參考自適應控制[J];中國電機工程學報;2013年26期
8 吳虎勝;張鳳鳴;吳廬山;;一種新的群體智能算法——狼群算法[J];系統(tǒng)工程與電子技術;2013年11期
9 于軍華;邱化慧;衣華;;氣力輸送在鍋爐飛灰回燃技術中的應用[J];中國粉體技術;2010年03期
10 溫文杰;馬曉茜;劉翱;;鍋爐混煤摻燒的飛灰含碳量預測與運行優(yōu)化[J];熱力發(fā)電;2010年03期
相關博士學位論文 前1條
1 匡芳君;群智能混合優(yōu)化算法及其應用研究[D];南京理工大學;2014年
相關碩士學位論文 前8條
1 劉暢;立體圖像舒適度的定量分析及評價研究[D];天津大學;2014年
2 王傳偉;基于狼群算法的三維傳感器優(yōu)化布置研究[D];大連理工大學;2014年
3 周娟;改進BP算法在海堤滲壓多測點監(jiān)測預報中的應用研究[D];合肥工業(yè)大學;2014年
4 程學遠;煤粉分離器動葉最優(yōu)彎扭角及安裝角的數(shù)值研究[D];華北電力大學;2014年
5 戎亞萍;基于路況數(shù)據(jù)的交通流預測模型及其對比分析[D];北京交通大學;2013年
6 劉井波;基于自組織神經(jīng)網(wǎng)絡的遠程故障診斷技術研究[D];電子科技大學;2008年
7 陳雪平;微波飛灰在線測碳儀的研究和系統(tǒng)實現(xiàn)[D];電子科技大學;2006年
8 楊仁付;采用導數(shù)約束關系的前向神經(jīng)網(wǎng)絡學習優(yōu)化方法研究[D];東南大學;2006年
,本文編號:2440985
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2440985.html