基于循環(huán)平穩(wěn)的電機(jī)軸承故障特征分析
[Abstract]:Three-phase induction motor with simple structure, reliable operation and high efficiency is widely used in various fields of production and life. As an important part of motor, rolling bearings are prone to failure and even serious consequences. Therefore, it is very important to detect and maintain the bearing regularly, to detect the fault as early as possible and to take measures. In this paper, a double pulse torque ripple model is proposed for bearing failure, such as the size of damage zone, the dynamic structure of bearing, and the change of bearing capacity when ball is entering or leaving the pit. Based on the model, the expression of characteristic frequency in stator current is derived. Through the analysis of the stator current signal under the double pulse model by the cyclic autocorrelation function and the cyclic spectral density function, compared with the traditional method of bearing fault feature extraction and identification, it is found that the cyclic stationary theory reduces the noise of the fundamental frequency and harmonics. Bearing fault feature frequency recognition and extraction has obvious advantages. In this paper, the relationship between the amplitude of bearing fault characteristic frequency and the fault damage width is studied. By using cyclic autocorrelation function, the variation of amplitude of bearing fault characteristic frequency from the first to the third edge frequency under different fault damage widths is analyzed. Then, by analyzing the cyclic spectral density of stator current signal, it can be seen that it has obvious spectral correlation between cyclic frequency domain and spectral frequency domain, and the fault characteristics can be identified from different angles by using this spectral correlation. It can not only reflect the cyclic autocorrelation information, but also show more fault characteristic information in the spectrum frequency domain, which provides more judgment basis for bearing fault identification. The stator current signals under different fault widths of motor are collected by using the motor bearing fault test platform in the laboratory, and the cyclic autocorrelation function and cyclic spectral density function are used to analyze these current signals. The comparison between the actual analysis results and the simulation results verifies the correctness of the theory and method in this paper, and also shows the superiority of the signal processing method of the cyclic stationary theory in identifying and extracting the frequency components of bearing fault characteristics.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM307
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 邱巖;劉海濤;;感應(yīng)電機(jī)軸承故障的機(jī)理與特征分析[J];科技創(chuàng)新與應(yīng)用;2016年07期
2 劉宗政;陳懇;陳振華;陳雁;黃元林;;滾動(dòng)軸承的振動(dòng)特性分析及典型故障診斷[J];機(jī)械設(shè)計(jì)與制造;2009年03期
3 李力,廖湘輝,張圓;循環(huán)平穩(wěn)度無(wú)量綱指標(biāo)應(yīng)用于滾動(dòng)軸承狀態(tài)分類[J];機(jī)械傳動(dòng);2005年03期
4 程軍圣,于德介,鄧乾旺,楊守;連續(xù)小波變換在滾動(dòng)軸承故障診斷中的應(yīng)用[J];中國(guó)機(jī)械工程;2003年23期
5 李力,屈梁生;循環(huán)統(tǒng)計(jì)量方法在滾動(dòng)軸承故障診斷中的應(yīng)用[J];振動(dòng)、測(cè)試與診斷;2003年02期
相關(guān)博士學(xué)位論文 前3條
1 劉靜;滾動(dòng)軸承缺陷非線性激勵(lì)機(jī)理與建模研究[D];重慶大學(xué);2014年
2 周宇;基于循環(huán)平穩(wěn)信號(hào)二維平面表示的滾動(dòng)軸承早期故障診斷方法研究[D];上海交通大學(xué);2012年
3 畢果;基于循環(huán)平穩(wěn)的滾動(dòng)軸承及齒輪微弱故障特征提取應(yīng)用研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前3條
1 范萍;故障軸承振動(dòng)特性分析與典型故障診斷[D];燕山大學(xué);2012年
2 張彥鴻;滾動(dòng)軸承故障信號(hào)特征提取技術(shù)研究[D];太原理工大學(xué);2009年
3 陳明;循環(huán)平穩(wěn)理論在齒輪及滾動(dòng)軸承故障診斷中的應(yīng)用研究[D];太原理工大學(xué);2008年
,本文編號(hào):2320691
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2320691.html