天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

超支化高選擇性質(zhì)子交換膜中多級自組裝質(zhì)子傳輸通道原位構(gòu)建及優(yōu)化研究

發(fā)布時間:2018-11-08 19:42
【摘要】:質(zhì)子交換膜廣泛應(yīng)用于電化學(xué)能量轉(zhuǎn)化裝置,包括質(zhì)子交換膜燃料電池(含直接甲醇燃料電池)、SPE水電解及釩氧液流電池中。由于具有良好的質(zhì)子傳導(dǎo)性、強的機械性能、抗氧化性和熱穩(wěn)定性,Nafion膜成為目前應(yīng)用最廣泛的質(zhì)子交換膜。但是,Nafion膜存在選擇透過性差的問題影響了其在直接甲醇燃料電池和釩氧液流電池中的大規(guī)模應(yīng)用。Nafion膜選擇透過性差在直接甲醇燃料電池應(yīng)用中將導(dǎo)致嚴重的甲醇燃料滲透。直接甲醇燃料電池在工作過程中,由于Nafion膜的阻醇性能不好,甲醇分子很容易從陽極穿透膜到達陰極,不僅造成甲醇燃料的浪費,同時嚴重抑制了陰極的氧還原反應(yīng),從而導(dǎo)致電池工作電壓和電池效率下降。因此,可以說高選擇性質(zhì)子交換膜的缺乏是影響直接甲醇燃料電池發(fā)展的絆腳石。而開發(fā)選擇性好,價格低廉的新型質(zhì)子交換膜是直接甲醇燃料電池發(fā)展的關(guān)鍵。同樣,Nafion膜的選擇性也影響了釩氧液流電池的發(fā)展進程。雖然Nafion膜極好的化學(xué)穩(wěn)定性使其成為當(dāng)前釩氧液流電池應(yīng)用中主流膜。然而,Nafion膜存在的高的釩離子滲透性使得由Nafion膜組裝的釩氧液流電池的電壓效率、庫侖效率和能量效率都較低?偟膩碚f,設(shè)計和開發(fā)高選擇性質(zhì)子交換膜是當(dāng)前直接甲醇燃料電池和釩氧液流電池領(lǐng)域的主要研究課題。高度有序的質(zhì)子傳輸通道是保證質(zhì)子高效傳導(dǎo),提高質(zhì)子交換膜選擇性的重要前提。所以,構(gòu)筑高選擇性質(zhì)子傳輸通道是質(zhì)子交換膜方向的最重要的研究課題。本論文通過調(diào)節(jié)質(zhì)子傳輸功能聚合物微觀結(jié)構(gòu)實現(xiàn)質(zhì)子傳輸通道在質(zhì)子交換膜中的自組裝,并通過優(yōu)化質(zhì)子交換膜中多級質(zhì)子傳輸通道微觀結(jié)構(gòu)來實現(xiàn)質(zhì)子交換膜選擇性的進一步提升。具體研究內(nèi)容如下所述:1、研究證實超支化聚酰胺質(zhì)子交換膜可以有效地降低燃料滲透,同時提高質(zhì)子傳導(dǎo)性。此質(zhì)子交換膜表現(xiàn)出比Nafion117高出至少15倍的阻醇性。在此基礎(chǔ)上,本論文首次提出了一個新的概念——多級質(zhì)子傳輸通道(HPCCs)。在這些HPCCs中,超支化聚酰胺分子內(nèi)部高密度磺酸基團組成的質(zhì)子傳輸通道稱為一級質(zhì)子傳輸通道(FOPCC)。另外,超支化聚酰胺分子封端功能基團與活化水分子間形成豐富的氫鍵網(wǎng)絡(luò)被稱為二級質(zhì)子傳輸通道(SOPCC)。由于一級與二級質(zhì)子傳輸通道之間的協(xié)同作用,超支化聚酰胺質(zhì)子交換膜表現(xiàn)出高效的質(zhì)子傳輸性能(0.282S/cm,80 oC)。通過調(diào)節(jié)合成超支化聚酰胺分子單體的納米結(jié)構(gòu),實現(xiàn)對多級質(zhì)子傳輸通道的優(yōu)化,從而降低了質(zhì)子交換膜的甲醇滲透性,同時其選擇性提高了1倍多。2、在多級質(zhì)子傳輸通道概念的基礎(chǔ)上,本論文通過調(diào)節(jié)一級質(zhì)子傳輸通道微觀結(jié)構(gòu)來進一步增強膜的阻醇性。首先合成了兩種磺酸根密度不同的都以-COOH封端的聚酰胺大分子,通過將不同質(zhì)量比例的兩種聚合物用溶液澆鑄法制備了一系列共混膜。由于兩種聚酰胺大分子中的磺酸基團-SO3H密度不同,所以通過調(diào)節(jié)共混膜中兩種分子比例可以實現(xiàn)質(zhì)子交換膜中一級質(zhì)子傳輸通道的調(diào)節(jié),從而實現(xiàn)質(zhì)子交換膜阻醇及選擇性能的優(yōu)化。3、使用類似想法,論文對多級質(zhì)子傳輸通道中的二級質(zhì)子傳輸通道的微觀結(jié)構(gòu)進行調(diào)節(jié)優(yōu)化,通過溫和的方法改變二級質(zhì)子傳輸通道的氫鍵強度及保水性,以此來優(yōu)化質(zhì)子交換膜的整體性能。首先,設(shè)計并合成了以不同功能基團(-COOH和-NH2)封端,大小相似的超支化聚酰胺大分子;將這兩種聚合物大分子按照不同的比例制備成復(fù)合膜。通過調(diào)整兩種聚酰胺大分子的比例來調(diào)節(jié)共混膜中的二級質(zhì)子傳輸通道的微觀結(jié)構(gòu),質(zhì)子交換膜的選擇性比Nafion117高出1.7倍。4、基于前期設(shè)計合成的高選擇性超支化聚酰胺質(zhì)子交換膜,將其應(yīng)用領(lǐng)域從直接甲醇燃料電池拓展至同樣對選擇性要求極高的釩氧液流電池中。超支化聚酰胺中多級質(zhì)子傳輸通道形成的致密結(jié)構(gòu)有效阻止了釩離子穿透。與Nafion117膜相比,超支化聚酰胺質(zhì)子交換膜表現(xiàn)出良好的的質(zhì)子/釩離子選擇性,高達14.4×104S.s/cm3,比Nafion117膜高出3倍。5、由于聚酰亞胺良好的化學(xué)穩(wěn)定性,設(shè)計并合成了超支化聚酰亞胺用于高選擇性多級質(zhì)子傳輸通道的構(gòu)筑。聚酰亞胺質(zhì)子交換膜機械性能比聚酰胺高出25%。透過該共混膜的甲醇滲透性很低以至于無法用儀器檢測到。綜上所述,通過大分子微觀結(jié)構(gòu)設(shè)計來構(gòu)筑高效多級自組裝質(zhì)子傳輸通道,以此獲得高選擇性的質(zhì)子交換膜,同時這些質(zhì)子交換膜表現(xiàn)出良好的機械性能。本論文為應(yīng)用于直接甲醇燃料電池及釩氧液流電池的新型質(zhì)子交換膜的開發(fā)研究提供了一定參考。
[Abstract]:The proton exchange membrane is widely used in electrochemical energy conversion devices, including proton exchange membrane fuel cells (including direct methanol fuel cells), SPE water electrolysis and oxygen-enriched liquid flow cells. The Nafion membrane is the most widely used proton exchange membrane due to its good proton conductivity, strong mechanical properties, oxidation resistance and thermal stability. However, the problem of selective permeability of the Nafion membrane has an influence on the large-scale application of the Nafion membrane in the direct methanol fuel cell and the oxygen-enriched liquid flow cell. the poor selectivity of the nafion membrane will result in severe methanol fuel penetration in the direct methanol fuel cell application. in the process of operation, the methanol molecule can easily penetrate the membrane to the cathode from the anode through the membrane due to the bad alcohol resistance of the Nafion membrane, not only the waste of the methanol fuel is caused, but also the oxygen reduction reaction of the cathode is seriously inhibited, resulting in a decrease in the operating voltage of the battery and the efficiency of the battery. Therefore, it can be said that the lack of a high-selectivity proton exchange membrane is a stumbling block to the development of direct methanol fuel cells. The new type of proton exchange membrane with good selectivity and low price is the key to the development of direct methanol fuel cell. Similarly, the selectivity of the Nafion membrane also affects the development process of the oxygen-enriched liquid flow cell. Although the Nafion membrane has excellent chemical stability, it becomes the main membrane in the application of the present oxygen-enriched liquid-flow battery. However, the high ionic permeability of the Nafion membrane is such that the voltage efficiency, coulombic efficiency and energy efficiency of the oxygen-oxygen flow cell assembled by the Nafion membrane are low. In general, the design and development of a highly selective proton exchange membrane is a major subject in the field of direct methanol fuel cells and oxygen-enriched liquid-flow cells. The highly ordered proton transfer channel is an important prerequisite for ensuring the efficient conduction of protons and improving the selectivity of the proton exchange membrane. Therefore, the construction of the high-selective proton transfer channel is the most important research topic in the direction of the proton exchange membrane. The self-assembly of the proton transfer channel in the proton exchange membrane is realized by adjusting the microstructure of the proton transfer function polymer, and the selectivity of the proton exchange membrane can be further improved by optimizing the microstructure of the multi-stage proton transfer channel in the proton exchange membrane. The specific content of the study is as follows: 1. The research confirms that the hyperbranched polyetheramine proton exchange membrane can effectively reduce the fuel penetration and improve the proton conductivity. the proton exchange membrane exhibits a resistance to alcohol that is at least 15 times higher than nafion 117. On this basis, a new concept _ multi-stage proton transfer channel (HPCCs) is proposed for the first time. In these HPCCs, the proton transfer channel consisting of the high-density sulfonic acid groups inside the hyperbranched polyetheramine molecule is referred to as a primary proton transfer channel (FOPCC). In addition, the formation of a rich hydrogen bond network between the functional groups of the hyperbranched polyylamine molecules and the activated water molecules is referred to as a secondary proton transfer channel (SOPCC). The highly effective proton transfer performance (0.282S/ cm, 80oC) is demonstrated by the synergistic effect of the primary and secondary proton transfer channels. the invention realizes the optimization of the multi-stage proton transfer channel by adjusting the nano-structure of the synthetic hyperbranched polyetheramine molecular monomer, thereby reducing the methanol permeability of the proton exchange membrane, and simultaneously improving the selectivity of the proton exchange membrane by more than 1. This paper further enhances the resistance of the membrane by adjusting the microstructure of the first-order proton transfer channel. A series of co-mixed membranes were prepared by casting two kinds of polymers with different mass ratios with the solution casting method. because the density of the sulfonic acid groups-SO3H in the two polyetheramine macromolecules is different, the regulation of the primary proton transfer channel in the proton exchange membrane can be realized by adjusting the proportion of the two molecules in the blending membrane, so as to realize the optimization of the proton exchange membrane resistance alcohol and the selection performance. In this paper, the micro-structure of the two-stage proton transfer channel in the multi-stage proton transfer channel is optimized, and the hydrogen bond strength and water-retaining property of the second-stage proton transfer channel are changed by a gentle method, thus the overall performance of the proton exchange membrane is optimized. First, the hyperbranched polyetheramine macromolecules with different functional groups (-COOH and-NH2) and similar in size are designed and synthesized, and the two polymer macromolecules are prepared into the composite membrane according to different proportions. the micro-structure of the two-stage proton transfer channel in the blending film is adjusted by adjusting the proportion of the two polyetheramine macromolecules, the selectivity of the proton exchange membrane is 1 to 7 times higher than that of the Nafion 117, the application field is extended from a direct methanol fuel cell to an oxygen-oxygen flow cell that is also highly selective to a very high selectivity. The dense structure of the multi-stage proton transfer channel in the hyperbranched polyetheramine effectively prevents the penetration of the oxygen ions. Compared with the Nafion 117 membrane, the hyperbranched polyetheramine proton exchange membrane exhibits good proton/ polar ion selectivity, a high of 14. 4-104S. s/ cm3, 3-fold higher than that of the Nafion 117 membrane, and 5, due to the good chemical stability of the polycarbodiimide, In this paper, a hyperbranched polycarbodiimide is designed and synthesized for the construction of high-selectivity multi-stage proton transfer channels. The mechanical properties of the polycarbodiimide proton exchange membrane were 25% higher than that of polyalicyclic amine. the methanol permeability through the blend membrane was so low that the instrument could not be detected with the instrument. To sum up, a high-selectivity proton exchange membrane is obtained by a macromolecular microstructure design to obtain a high-selectivity proton exchange membrane, and at the same time, the proton exchange membranes exhibit good mechanical properties. This paper provides a reference for the development and research of a new type of proton exchange membrane for direct methanol fuel cell and oxygen-oxygen flow cell.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM911.4

【相似文獻】

相關(guān)期刊論文 前10條

1 肖帶麗;;無氟質(zhì)子交換膜的研究和進展[J];廣東化工;2010年07期

2 李瓊;李薇;張海寧;潘牧;;聚合物質(zhì)子溶劑在質(zhì)子交換膜中的應(yīng)用[J];電源技術(shù);2011年04期

3 張增英;;氟離子交換膜[J];杭州化工;1991年04期

4 孫紅;欒麗華;吳鐵軍;唐玉蘭;王遜;;質(zhì)子交換膜中的傳質(zhì)分析[J];工程熱物理學(xué)報;2012年02期

5 艾明歡;李海濱;;超薄CsH_2PO_4/SiO_2復(fù)合質(zhì)子交換膜的制備[J];材料導(dǎo)報;2012年04期

6 楊萌;相艷;王慕冰;康思聰;徐惠彬;;化學(xué)與生物改性合成質(zhì)子交換膜[J];化學(xué)進展;2009年01期

7 吳魁;解東來;;高溫質(zhì)子交換膜研究進展[J];化工進展;2012年10期

8 石倩茹;陶慷;章勤;薛立新;張堯劍;;離子液體在質(zhì)子交換膜中的應(yīng)用研究進展[J];膜科學(xué)與技術(shù);2013年03期

9 羅居杰;宋艷慧;崔培培;謝小玲;;接枝磺酸基質(zhì)子交換膜的制備及性能研究[J];化工新型材料;2014年03期

10 王盎然;包永忠;翁志學(xué);黃志明;;丙烯腈-對苯乙烯磺酸共聚物質(zhì)子交換膜的合成與性能[J];高;瘜W(xué)工程學(xué)報;2010年05期

相關(guān)會議論文 前10條

1 張燕梅;方軍;伍永彬;;用于堿性直接甲醇燃料電池的新型含氟陰離子交換膜的制備及表征[A];中國化學(xué)會第十一屆全國氟化學(xué)會議論文摘要集[C];2010年

2 徐維林;陸天虹;邢巍;;低甲醇透過質(zhì)子交換膜的研究[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年

3 劉盛洲;張興鵬;印杰;;嵌段長度對磺酸基嵌段共聚物質(zhì)子交換膜性能的影響研究[A];2006年全國高分子材料科學(xué)與工程研討會論文集[C];2006年

4 石守穩(wěn);陳旭;;浸泡質(zhì)子交換膜力學(xué)性能及其微觀變形機理的研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年

5 馮慶霞;張冬芳;嚴六明;;納米復(fù)合H_3PO_4-BPO_4-ABPBI高溫質(zhì)子交換膜的制備與表征[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年

6 李林繁;于洋;鄧波;虞鳴;謝雷東;李景燁;陸曉峰;;輻射接枝法制備質(zhì)子交換膜的研究[A];中國核科學(xué)技術(shù)進展報告——中國核學(xué)會2009年學(xué)術(shù)年會論文集(第一卷·第8冊)[C];2009年

7 王博;王新東;王文紅;張紅飛;陳玲;;燃料電池質(zhì)子交換膜電導(dǎo)率的測試方法研究[A];冶金研究中心2005年“冶金工程科學(xué)論壇”論文集[C];2005年

8 薛松;尹鴿平;;磺化聚醚醚酮/磷鎢酸復(fù)合質(zhì)子交換膜[A];第十三次全國電化學(xué)會議論文摘要集(上集)[C];2005年

9 朱靖;邵柯;那輝;;基于靜電紡絲技術(shù)的納米纖維質(zhì)子交換膜材料[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年

10 紀(jì)曉波;嚴六明;陸文聰;馬和平;;酸堿質(zhì)子交換膜中質(zhì)子動力學(xué)行為及協(xié)同效應(yīng)[A];中國化學(xué)會第27屆學(xué)術(shù)年會第14分會場摘要集[C];2010年

相關(guān)重要報紙文章 前1條

1 本報記者 李香才;質(zhì)子交換膜燃料電池技術(shù)取得進展[N];中國證券報;2013年

相關(guān)博士學(xué)位論文 前10條

1 馬麗英;超支化高選擇性質(zhì)子交換膜中多級自組裝質(zhì)子傳輸通道原位構(gòu)建及優(yōu)化研究[D];中國地質(zhì)大學(xué);2017年

2 袁森;燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究[D];上海交通大學(xué);2014年

3 劉鑫;燃料電池用磺酸化聚醚醚酮質(zhì)子交換膜的制備與改性研究[D];北京化工大學(xué);2015年

4 付鳳艷;聚磷腈類質(zhì)子交換膜的制備與表征[D];北京理工大學(xué);2015年

5 喬宗文;側(cè)鏈型磺化聚砜質(zhì)子交換膜的制備、微相分離結(jié)構(gòu)與性能的研究[D];中北大學(xué);2016年

6 吳斌;質(zhì)子交換膜微觀結(jié)構(gòu)調(diào)控研究[D];天津大學(xué);2015年

7 張杰;含POSS嵌段共聚物質(zhì)子交換膜的制備及性能研究[D];西北工業(yè)大學(xué);2016年

8 李云蹊;直接甲醇燃料電池填充型復(fù)合質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2017年

9 王曉恩;復(fù)合質(zhì)子交換膜機械增強與溫濕度響應(yīng)特性[D];武漢理工大學(xué);2011年

10 鐘雙玲;直接甲醇燃料電池用新型質(zhì)子交換膜的制備與性能研究[D];吉林大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 黃鑫;高溫質(zhì)子交換膜材料的制備和性能研究[D];合肥工業(yè)大學(xué);2017年

2 裴儒博;新型質(zhì)子導(dǎo)電功能性配位聚合物的制備、表征及性能研究[D];鄭州大學(xué);2017年

3 陳駿;金屬雙極板質(zhì)子交換膜燃料電池內(nèi)阻研究[D];武漢理工大學(xué);2014年

4 韓澍;含羧基磺化聚芳醚酮砜類質(zhì)子交換膜材料的制備與性能研究[D];長春工業(yè)大學(xué);2015年

5 梁宇;交聯(lián)型直接甲醇燃料電池質(zhì)子交換膜的制備及性能研究[D];蘭州大學(xué);2015年

6 薛童;磺化嵌段聚醚砜質(zhì)子交換膜的制備與改性[D];南京理工大學(xué);2015年

7 袁祖鳳;磺化聚芳酸砜類側(cè)鏈型質(zhì)子交換膜的制備及改性[D];南京理工大學(xué);2015年

8 胡玉濤;咪唑摀化聚砜共混氫氧根交換膜的制備與性能[D];大連理工大學(xué);2015年

9 修鳳羽;半超支化半交聯(lián)磺化聚酰亞胺復(fù)合質(zhì)子交換膜制備及性能研究[D];大連理工大學(xué);2015年

10 孫成剛;直接甲醇燃料電池用高性能含硅無皂乳液的制備及性能研究[D];吉林農(nóng)業(yè)大學(xué);2015年

,

本文編號:2319469

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2319469.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶81253***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com