天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電氣論文 >

基于二階廣義積分器的高壓直流輸電系統(tǒng)控制策略研究

發(fā)布時間:2018-10-12 11:22
【摘要】:近年來,我國經(jīng)濟高速發(fā)展,社會電氣化水平持續(xù)提高,國家整體電力需求呈現(xiàn)高速增長。然而,從我國的能源稟賦來講,無論是傳統(tǒng)的化石能源還是新興的清潔能源,其主要分布均位于西南部地區(qū),而我國能源需求的重心則位于中東部地區(qū)。因此,在中國這樣一個幅員遼闊、經(jīng)濟高速發(fā)展的大國中,高壓交直流輸電必將獲得快速發(fā)展。一方面,相比與交流輸電系統(tǒng),高壓直流輸電系統(tǒng)具有輸送容量大、線路走廊窄、靈活性強、運行經(jīng)濟環(huán)保等優(yōu)點,適合應用于大功率、遠距離輸電的場合;另一方面,高壓直流輸電技術可以實現(xiàn)大區(qū)電網(wǎng)異步互聯(lián),增強風能、太陽能等清潔能源的并網(wǎng)消納能力,提高電力系統(tǒng)的穩(wěn)定性。模塊化多電平換流器高壓直流輸電系統(tǒng)(MMC-HVDC)作為一種極具發(fā)展前景的輸電方式,已經(jīng)在很多工程實際中得到了應用。MMC換流站模塊化的拓撲結構決定了其可應用容量較小的電力電子器件實現(xiàn)很高的電壓等級和功率水平;電平數(shù)較多,輸出波形畸變小,無需加裝交流濾波裝置,可實現(xiàn)冗余控制;系統(tǒng)損耗小,無功功率可控,開關頻率可控;具有更好的穩(wěn)態(tài)和暫態(tài)性能。MMC-HVDC采用子模塊級聯(lián)結構,這種含有大量器件的模塊化結構也帶來了相應的控制問題,例如,平穩(wěn)的預充電與啟動環(huán)節(jié),子模塊電容電壓均衡控制,相間環(huán)流的抑制以及需要比低電平VSC-HVDC更復雜的故障保護策略。因此,MMC-HVDC的優(yōu)化控制是當前研究的一大熱點,專家學者們提出了很多具有優(yōu)良特性的控制算法。本文從以下兩方面對MMC-HVDC的優(yōu)化控制進行研究:一方面利用二階廣義積分器(DSOGI-QSG)進行網(wǎng)側交流電壓的估算,提高鎖相環(huán)節(jié)與電壓測量環(huán)節(jié)的精度與可靠性;另一方面采用改進的模型預測方法來減少預測環(huán)節(jié)的計算量,使模型預測方法可以用于更多電平的MMC-HVDC系統(tǒng)。最后,在PSCAD/EMTDC仿真實驗平臺上對所提方法進行了驗證,仿真結果顯示所提方法有良好的動態(tài)響應,能夠達到預期的控制目標。
[Abstract]:In recent years, with the rapid development of our economy, the level of social electrification continues to improve, and the overall power demand of the country is growing at a high speed. However, in terms of the energy endowment of our country, both the traditional fossil energy and the emerging clean energy are mainly distributed in the southwest region, and the center of energy demand in China lies in the central and eastern regions. Therefore, high voltage AC / DC transmission is bound to develop rapidly in a large country with a vast territory and rapid economic development. On the one hand, compared with AC transmission system, HVDC system has the advantages of large transmission capacity, narrow line corridor, strong flexibility, economic and environmental protection and so on. On the other hand, it is suitable for high power and long distance transmission. High voltage direct current (HVDC) transmission technology can realize asynchronous interconnection of large area power grid, enhance the grid and absorption capacity of clean energy, such as wind energy and solar energy, and improve the stability of power system. Modular multilevel converter high voltage direct current transmission system (MMC-HVDC) as a very promising transmission mode, The modularization topology structure of MMC converter station determines that the power electronic devices with small capacity can be used to achieve high voltage level and power level, the number of level is more, and the distortion of output waveform is small. Without adding AC filter device, redundant control can be realized; system loss is small, reactive power is controllable, switching frequency is controllable; and better steady-state and transient performance is achieved. MMC-HVDC adopts submodule cascade structure. This modular structure with a large number of devices also brings about the corresponding control problems, such as steady precharge and startup, capacitor voltage equalization control of sub-modules. The suppression of interphase circulation and the need for a more complex fault protection strategy than low level VSC-HVDC. Therefore, the optimization control of MMC-HVDC is a hot topic in the current research. Many control algorithms with excellent characteristics have been proposed by experts and scholars. In this paper, the optimal control of MMC-HVDC is studied in the following two aspects: on the one hand, the second order generalized integrator (DSOGI-QSG) is used to estimate the AC voltage on the grid side to improve the accuracy and reliability of PLL and voltage measurement; On the other hand, the improved model prediction method is used to reduce the computational complexity of the prediction link, so that the model prediction method can be used in multi-level MMC-HVDC systems. Finally, the proposed method is verified on the PSCAD/EMTDC simulation platform. The simulation results show that the proposed method has a good dynamic response and can achieve the desired control objectives.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM721.1

【參考文獻】

相關期刊論文 前10條

1 高燃;賈鳳鳴;廖羽晗;束暢;朱雨晨;陳鵬程;;電壓源換流器技術的最新發(fā)展及其在柔性交流輸電系統(tǒng)領域中的應用[J];高壓電器;2016年11期

2 孫強;王莎莎;魏克新;高成海;;采用比例諧振調節(jié)器的三相VSC控制系統(tǒng)穩(wěn)定性研究[J];高電壓技術;2016年10期

3 張占鋒;樊艷芳;王一波;王環(huán);;基于雙二階廣義積分鎖頻環(huán)的光伏并網(wǎng)發(fā)電系統(tǒng)仿真研究[J];可再生能源;2016年08期

4 湯廣福;龐輝;賀之淵;;先進交直流輸電技術在中國的發(fā)展與應用[J];中國電機工程學報;2016年07期

5 孫強;魏克新;王莎莎;杜吉飛;高成海;;PWM變換器在矢量旋轉坐標系下比例諧振控制策略及其魯棒性設計[J];中國電機工程學報;2016年05期

6 梁營玉;張濤;劉建政;楊奇遜;梅紅明;劉樹;;模型預測控制在MMC-HVDC中的應用[J];電工技術學報;2016年01期

7 王朝亮;許建中;趙成勇;趙鵬豪;宗波;;基于單箝位型子模塊的MMC及拓撲改進方案[J];電力自動化設備;2015年09期

8 許建中;李承昱;熊巖;姬煜軻;趙成勇;安婷;;模塊化多電平換流器高效建模方法研究綜述[J];中國電機工程學報;2015年13期

9 趙國亮;趙鵬豪;趙成勇;許建中;李衛(wèi)國;;模塊化多電平換流器子模塊拓撲結構對比分析[J];華北電力大學學報(自然科學版);2015年03期

10 吳德會;李钷;;基于FCS-MPC的電壓跟蹤調制方法[J];電力自動化設備;2015年03期

相關博士學位論文 前4條

1 辛業(yè)春;基于MMC的高壓直流輸電系統(tǒng)控制策略研究[D];華北電力大學;2015年

2 范聲芳;模塊化多電平變換器(MMC)若干關鍵技術研究[D];華中科技大學;2014年

3 胡靜;基于MMC的多端直流輸電系統(tǒng)控制方法研究[D];華北電力大學;2013年

4 陳海榮;交流系統(tǒng)故障時VSC-HVDC系統(tǒng)的控制與保護策略研究[D];浙江大學;2007年

,

本文編號:2265918

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2265918.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶804f7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com