直流輸電線路換相失敗機(jī)理和抑制措施分析
[Abstract]:At present, our country has entered the era of national power grid interconnection. UHVDC transmission is the most important part of the strategy of "power transmission from west to east, from north to south, and from the whole country". In HVDC transmission system, the probability of commutation failure is very high, which will bring about a series of system parameters change, including current rising, voltage decreasing, transmission power decreasing and so on, which will make DC system deviate from normal operation state. If the components in the system are damaged, if the fault is allowed to develop, it will lead to the short circuit fault of the AC system, and even make the whole system transmission stop and face collapse. Based on the commutation process of DC system, the cause of commutation failure is studied in this paper. The essence of commutation failure is that the inverter side extinguishing arc angle is too small to recombine the carrier in thyristor. Then the direct quantitative relationship between the extinguishing angle and the physical quantities in the system is analyzed. By using this relationship several main reasons for the commutation failure are summarized and some methods to prevent the commutation failure are put forward. Because of the different physical quantities of the three-phase line caused by asymmetric fault, the probability of commutation failure in the converter station is also different. In this paper, the difference of commutation failure probability of each commutation valve is analyzed by calculating the variation of system physical quantities in various asymmetric faults, and the amplitude and phase of commutation voltage are integrated by the change of extinction angle 緯. Based on the change of 緯, the relationship between the transition resistance and the probability of commutation failure of each valve is analyzed, and the correctness of the conclusion is verified by using PSCAD simulation platform. Series capacitors can effectively restrain the occurrence of commutation failure. In this paper, by analyzing the different operation states of series capacitor of converter before and after, by using vector graph method, several reasons for suppression of commutation failure of series capacitor are obtained, including: increasing the amplitude of commutation voltage, at the same time making the phase of commutation voltage lag; The DC current increases rapidly after the fault, which increases the voltage of the capacitor, which in turn suppresses the increase of the DC current, and the suppression ability is proportional to the increase of the current. The series capacitor can counteract part of the commutation reactance. The commutation electromagnetic transient process is accelerated and the commutative arc angle 渭 is reduced. Finally, the PSCAD simulation platform is used to verify that the series capacitor converter system can effectively reduce the critical transition resistance of each fault. In order to solve the problem of commutation failure, a commutation failure suppression scheme is proposed in this paper, which consists of two parts: the prediction of commutation failure and the suppression of commutation failure by series capacitor. The difference between the maximum commutative area and the critical commutative area is used as an index to judge whether the commutative failure occurs. If the difference between the maximum commutative area and the critical commutative area falls below the set safe value, the commutation failure will occur. This prediction method is clear and simple in logic and fast and reliable in action. The detection frequency is dense. The simulation results show that the prediction method has a high success rate. It is predicted that the series capacitor will be put into series immediately after the commutation failure occurs to restrain the commutative failure. The simulation results show that the series capacitor can effectively avoid the commutative failure. And it can effectively reduce the critical transition resistance under various faults.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM721.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐敬友;譚海燕;孫海順;吳晉波;;考慮直流電流變化及交流故障發(fā)生時(shí)刻影響的HVDC換相失敗分析方法[J];電網(wǎng)技術(shù);2015年05期
2 袁陽(yáng);衛(wèi)志農(nóng);王華偉;雷霄;孫國(guó)強(qiáng);;基于直流電流預(yù)測(cè)控制的換相失敗預(yù)防方法[J];電網(wǎng)技術(shù);2014年03期
3 張志朝;劉茂濤;徐攀騰;李清;洪誼東;余濤;;基于PSCAD/EMTDC仿真平臺(tái)的±800kV特高壓直流輸電工程建模及仿真[J];電氣應(yīng)用;2013年S2期
4 陳仕龍;束洪春;甄穎;;云廣特高壓直流輸電負(fù)極運(yùn)行換相失敗及控制研究[J];電力自動(dòng)化設(shè)備;2013年06期
5 蔣平;嚴(yán)棟;劉盛松;胡偉;;基于GD-FNN的特高壓直流輸電暫態(tài)穩(wěn)定控制[J];電力系統(tǒng)保護(hù)與控制;2013年10期
6 萬(wàn)磊;丁輝;劉文焯;;基于實(shí)際工程的直流輸電控制系統(tǒng)仿真模型[J];電網(wǎng)技術(shù);2013年03期
7 于春光;陳青;高湛軍;;計(jì)及直流接入的交流系統(tǒng)故障計(jì)算模型研究[J];電力系統(tǒng)保護(hù)與控制;2013年03期
8 肖俊;李興源;;高壓直流輸電系統(tǒng)觸發(fā)滯后角與換相時(shí)間關(guān)系的分析[J];電力系統(tǒng)保護(hù)與控制;2012年18期
9 鄭曉冬;邰能靈;楊光亮;涂崎;;特高壓直流輸電系統(tǒng)的建模與仿真[J];電力自動(dòng)化設(shè)備;2012年07期
10 李新年;易俊;李柏青;孫華東;雷霄;曾南超;;直流輸電系統(tǒng)換相失敗仿真分析及運(yùn)行情況統(tǒng)計(jì)[J];電網(wǎng)技術(shù);2012年06期
相關(guān)會(huì)議論文 前1條
1 王麗穎;文俊;徐超;李偉霞;曹智慧;陳熙科;;CCC與LCC換流器的比較研究[A];中國(guó)高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 于春光;計(jì)及直流接入的交流系統(tǒng)故障計(jì)算方法研究[D];山東大學(xué);2012年
2 黃勝利;時(shí)變動(dòng)態(tài)相量理論在電力系統(tǒng)分析中的應(yīng)用[D];中國(guó)電力科學(xué)研究院;2002年
相關(guān)碩士學(xué)位論文 前4條
1 王鐵柱;逆變站交流系統(tǒng)故障期間的短路電流特性研究[D];中國(guó)電力科學(xué)研究院;2015年
2 梁松濤;特高壓直流輸電換相失敗特性研究[D];昆明理工大學(xué);2014年
3 康青;動(dòng)態(tài)無(wú)功補(bǔ)償設(shè)備在高壓直流輸電換相失敗中的應(yīng)用研究[D];北京交通大學(xué);2014年
4 洪善寧;交流側(cè)不對(duì)稱故障時(shí)HVDC系統(tǒng)多態(tài)動(dòng)態(tài)相量模型研究[D];華北電力大學(xué)(北京);2008年
,本文編號(hào):2207681
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2207681.html