光伏—混合儲(chǔ)能直流微電網(wǎng)能量管理策略研究
[Abstract]:In recent years, distributed generation (Distributed generation,DG), represented by photovoltaic (PV), has attracted wide attention due to energy crisis and deterioration of ecological environment. Compared with AC microgrid, DC microgrid has become a hot research area because of its simple structure and convenient control. However, the instability of distributed power generation will seriously affect the reliability of power generation system. In order to supply the system continuously and stably, it is necessary to equip the photovoltaic system with the corresponding energy storage system. The hybrid energy storage system (Hybrid Energy Storage System,HESS), which consists of energy storage element battery and power type energy storage element supercapacitor, can complement each other and make full use of the advantages of both. With the corresponding energy management scheme and control strategy, the service life of the system can be effectively extended. In this paper, the operation and control of PV DC microgrid with hybrid energy storage system are studied. In view of the short life of storage battery and the small capacity of supercapacitor in hybrid energy storage system, a new energy management scheme for hybrid energy storage system is proposed. A coordinated control strategy for photovoltaic DC microgrid with hybrid energy storage system is studied. Firstly, the structure of PV-hybrid energy storage DC microgrid is introduced. Mathematical models of photovoltaic cells, batteries and supercapacitors are established, and their output characteristics are analyzed and studied. According to the working requirements of the system, two working modes, constant voltage control (CVC) and maximum power tracking control (MPPT), are set up for photovoltaic power generation system. The incremental conductance method is used for MPPT control. The structure and working principle of two-way DC/DC converter and two-way DC/AC converter are studied. Secondly, the energy management strategy of a hybrid energy storage system composed of batteries and supercapacitors is studied. According to the working characteristics of two kinds of energy storage elements, the process of charging and discharging is optimized, so that the working current of the battery changes smoothly and the supercapacitor bears the part of power fluctuation, which effectively prolongs the service life of the energy storage system. In view of the small energy density of supercapacitors, a limit management strategy based on supercapacitor charge state (Stage of Charge,SOC) partition is studied. According to the different working areas divided by SOC, the power of storage battery and supercapacitor is adjusted reasonably, which effectively improves the shortcoming that the system can not work properly due to overcharge or overdischarge of the supercapacitor, and maintains the normal operation of the system. The effectiveness of the energy management strategy of hybrid energy storage system is verified by simulation in Matlab/Simulink. Then, a coordinated control strategy of photovoltaic DC microgrid with hybrid energy storage system is studied by synthesizing the charging state of the energy storage device and the power balance of the system. In different working conditions, the working mode of DC microgrid system is divided reasonably, the working state of each converter is determined, and the energy of each unit in the micro-grid is allocated reasonably. Simulation results show the effectiveness of the strategy in Matlab/Simulink. Finally, the hardware and software of the PV DC microgrid system with hybrid energy storage are designed. Taking DSP2812 as the control core, the experimental platform of hybrid energy storage system is built in the laboratory. The subsystem is debugged and the power allocation experiment is completed, which preliminarily verifies the correctness of the energy management strategy of the hybrid energy storage system.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM727
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙玉林;惠明通;;孤立交直流混合微電網(wǎng)控制策略研究[J];電器與能效管理技術(shù);2016年04期
2 孫建龍;竇曉波;張子仲;全相軍;許泰峰;徐沛;;直流對(duì)等式微電網(wǎng)混合儲(chǔ)能系統(tǒng)協(xié)調(diào)控制策略[J];電工技術(shù)學(xué)報(bào);2016年04期
3 鄒才能;趙群;張國生;熊波;;能源革命:從化石能源到新能源[J];天然氣工業(yè);2016年01期
4 李霞林;郭力;王成山;李運(yùn)帷;;直流微電網(wǎng)關(guān)鍵技術(shù)研究綜述[J];中國電機(jī)工程學(xué)報(bào);2016年01期
5 程志江;李永東;謝永流;邱麟;董博;樊小朝;;帶超級(jí)電容的光伏發(fā)電微網(wǎng)系統(tǒng)混合儲(chǔ)能控制策略[J];電網(wǎng)技術(shù);2015年10期
6 孟潤泉;劉家贏;文波;韓肖清;;直流微網(wǎng)混合儲(chǔ)能控制及系統(tǒng)分層協(xié)調(diào)控制策略[J];高電壓技術(shù);2015年07期
7 賈宏杰;王丹;徐憲東;余曉丹;;區(qū)域綜合能源系統(tǒng)若干問題研究[J];電力系統(tǒng)自動(dòng)化;2015年07期
8 羅來軍;朱善利;鄒宗憲;;我國新能源戰(zhàn)略的重大技術(shù)挑戰(zhàn)及化解對(duì)策[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2015年02期
9 張學(xué);裴瑋;鄧衛(wèi);屈慧;沈子奇;趙振興;;多源/多負(fù)荷直流微電網(wǎng)的能量管理和協(xié)調(diào)控制方法[J];中國電機(jī)工程學(xué)報(bào);2014年31期
10 吳雄;王秀麗;劉世民;祝振鵬;劉春陽;段杰;侯菲;;微電網(wǎng)能量管理系統(tǒng)研究綜述[J];電力自動(dòng)化設(shè)備;2014年10期
相關(guān)碩士學(xué)位論文 前10條
1 陳毛欣;基于虛擬同步發(fā)電機(jī)的光伏逆變技術(shù)研究[D];太原理工大學(xué);2016年
2 賈肖肖;獨(dú)立光伏系統(tǒng)中蓄電池充放電技術(shù)的研究[D];太原理工大學(xué);2016年
3 趙耀民;雙層母線直流微電網(wǎng)協(xié)調(diào)控制策略研究[D];太原理工大學(xué);2016年
4 陳上豪;含混合儲(chǔ)能系統(tǒng)的光伏微電網(wǎng)能量管理策略研究[D];江蘇大學(xué);2016年
5 田明杰;基于蓄電池與超級(jí)電容器的直流微網(wǎng)混合儲(chǔ)能研究[D];北京交通大學(xué);2016年
6 江晨;直流微網(wǎng)中DC/DC變換器并聯(lián)技術(shù)研究[D];北京交通大學(xué);2016年
7 王宇;超級(jí)電容與蓄電池混合儲(chǔ)能系統(tǒng)的能量管理與控制研究[D];哈爾濱工業(yè)大學(xué);2016年
8 蘇展;獨(dú)立運(yùn)行微網(wǎng)系統(tǒng)設(shè)計(jì)[D];北京交通大學(xué);2015年
9 孫學(xué)超;基于DSP的可調(diào)度式光伏并網(wǎng)逆變系統(tǒng)的研究[D];太原理工大學(xué);2015年
10 劉家贏;直流微電網(wǎng)混合儲(chǔ)能控制及系統(tǒng)分層協(xié)調(diào)控制策略[D];太原理工大學(xué);2015年
,本文編號(hào):2207186
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2207186.html