基于參數(shù)辨識(shí)的永磁同步電機(jī)無差拍電流預(yù)測(cè)控制
[Abstract]:Permanent magnet synchronous motor (PMSM) has many advantages, such as fast dynamic response, high steady-state precision and wide speed range, so it has been widely used in the field of high-precision servo control. The control effect of the current inner loop of servo system has a great influence on the dynamic and steady performance of the motor. The traditional current loop control strategy is difficult to meet the requirements of the motor control performance. Therefore, new control strategies such as predictive control are used in motor current loop control. In this paper, the mathematical model of permanent magnet synchronous motor (PMSM) is simplified, and its mathematical model in three-phase stationary coordinate system is deduced. Based on the principle of conservation of magnetic potential, the CLARK and PARK transformation matrices are derived. The mathematical model of the three-phase permanent magnet synchronous motor under dq-axis is obtained, which can decouple the excitation and torque components of the motor. The mathematical model is discretized by the first order Taylor formula and the predictive control model of the motor is obtained. Secondly, the principle and control performance of predictive control are studied. Because the performance of predictive control depends on the accuracy of motor parameters, the relationship between the error of motor parameters and the dynamic and steady performance of predictive control is analyzed theoretically in this paper. The control system diverges when the difference between the predictive model inductance and the actual inductance of the motor is large. In order to enhance the robustness of the control system to the inductance parameters, a robust current predictive control algorithm is used to adjust the stable range of the control system by changing the weight coefficient. However, the decrease of the weight coefficient will reduce the bandwidth of the control system and slow down the dynamic response of the current. Therefore, in order to maximize the performance of predictive control, it is necessary to combine the advantages of the two algorithms to complement each other. Then, in order to eliminate the current steady-state error caused by the parameter deviation of the motor, the inductance and flux chain of the motor are identified online by the model reference adaptive method, and the model parameters are corrected in real time by the identification value of the motor parameters. At the same time, an on-line switching strategy based on inductance parameter identification is proposed. The robust control algorithm is used to improve the stability of the control system when the inductance deviation is large, but when the inductance parameter converges to the real value, the robust control algorithm is used to improve the stability of the control system. Then switching back to the traditional deadbeat current predictive control, the stability of the control system is improved while maintaining its good dynamic response. Finally, a permanent magnet synchronous motor drive system based on TMS320F28335 chip is designed. The relationship between the performance of beat free predictive control and motor parameters is further studied through experiments, and the robust predictive control algorithm is verified. Model reference adaptive parameter identification algorithm and predictive control algorithm are correct and effective.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 楊宗軍;王莉娜;;表貼式永磁同步電機(jī)的多參數(shù)在線辨識(shí)[J];電工技術(shù)學(xué)報(bào);2014年03期
2 莫會(huì)成;閔琳;王健;任雷;;現(xiàn)代高性能永磁交流伺服系統(tǒng)綜述——永磁電機(jī)篇[J];微電機(jī);2013年09期
3 王恩德;黃聲華;;表貼式永磁同步電機(jī)伺服系統(tǒng)電流環(huán)設(shè)計(jì)[J];中國(guó)電機(jī)工程學(xué)報(bào);2012年33期
4 黃偉忠;宋春華;;永磁交流伺服電機(jī)國(guó)內(nèi)外市場(chǎng)概況[J];微特電機(jī);2009年01期
5 安群濤;孫力;趙克;;一種永磁同步電動(dòng)機(jī)參數(shù)的自適應(yīng)在線辨識(shí)方法[J];電工技術(shù)學(xué)報(bào);2008年06期
相關(guān)博士學(xué)位論文 前2條
1 牛里;基于參數(shù)辨識(shí)的高性能永磁同步電機(jī)控制策略研究[D];哈爾濱工業(yè)大學(xué);2015年
2 劉侃;永磁同步電機(jī)多參數(shù)在線辨識(shí)研究[D];湖南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前4條
1 劉博;基于擾動(dòng)觀測(cè)的永磁同步電機(jī)電流預(yù)測(cè)控制研究[D];哈爾濱工業(yè)大學(xué);2015年
2 張世博;基于永磁同步電機(jī)的高精度電液伺服系統(tǒng)設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2014年
3 牛宗賓;工業(yè)機(jī)器人交流伺服驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2013年
4 蔡文豹;顯式模型預(yù)測(cè)控制及在電機(jī)控制中的應(yīng)用[D];浙江工業(yè)大學(xué);2012年
,本文編號(hào):2199199
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2199199.html