低成本車用無(wú)刷直流電機(jī)矢量控制系統(tǒng)的研究
本文選題:STM32F103 + 矢量控制; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:在中短短途代步工具中,電動(dòng)自行車依靠?jī)r(jià)格低廉、環(huán)境友好、使用便捷等優(yōu)勢(shì)迅速占領(lǐng)市場(chǎng),展現(xiàn)出了良好的經(jīng)濟(jì)前景以及迅猛的發(fā)展勢(shì)頭。無(wú)刷直流電機(jī)相對(duì)于其他電機(jī)產(chǎn)品具有高效率和寬調(diào)速范圍的優(yōu)勢(shì)而被廣泛應(yīng)用于電動(dòng)自行車市場(chǎng)。近年來(lái),為了進(jìn)一步從運(yùn)行效率、靜音效果、車身穩(wěn)定性提高用戶體驗(yàn),市場(chǎng)對(duì)電動(dòng)自行車電機(jī)驅(qū)動(dòng)器的要求也在逐步提高,傳統(tǒng)的六步換相控制方式顯然已經(jīng)無(wú)法滿足需求,因此,研究新一代的性能優(yōu)良的驅(qū)動(dòng)器已經(jīng)迫在眉睫。本文主要研究了磁場(chǎng)定向控制技術(shù)在電動(dòng)車用無(wú)刷直流電機(jī)控制領(lǐng)域的應(yīng)用。在無(wú)刷直流電機(jī)的本體結(jié)構(gòu)方面,首先介紹了轉(zhuǎn)子結(jié)構(gòu)與位置傳感器,在此基礎(chǔ)上,以傳統(tǒng)的方波控制方式為例,深入分析了無(wú)刷直流電機(jī)的基本工作原理,推導(dǎo)了無(wú)刷直流電機(jī)在dq旋轉(zhuǎn)坐標(biāo)系下的電壓和轉(zhuǎn)矩方程。緊接著,著重介紹了空間矢量脈寬調(diào)制技術(shù)的基本原理,并從參考電壓矢量扇區(qū)的判定,非零基本電壓矢量作用時(shí)間的計(jì)算以及過(guò)調(diào)制區(qū)限幅處理等方面詳細(xì)介紹了其實(shí)現(xiàn)方法,為后續(xù)仿真模塊搭建以及程序編寫提供了理論基礎(chǔ)。在Matlab的Simulink平臺(tái)搭建了無(wú)刷電機(jī)矢量控制系統(tǒng)的仿真模型,詳細(xì)介紹了各個(gè)子模塊的構(gòu)造。隨后,重點(diǎn)介紹了本系統(tǒng)設(shè)計(jì)中的兩個(gè)關(guān)鍵問(wèn)題:非可觀測(cè)區(qū)的相電流重構(gòu)以及基于線性插值算法的電機(jī)轉(zhuǎn)子位置估算。分析了非可觀測(cè)區(qū)誤差產(chǎn)生的原因,提出了基于PWM移相的解決方案,并在Simulink仿真平臺(tái)搭建了標(biāo)準(zhǔn)相電流重構(gòu)的仿真模塊,驗(yàn)證了相電流重構(gòu)方案的可行性。在電機(jī)轉(zhuǎn)子位置估算方面,介紹了線性插值算法的基本原理,在此基礎(chǔ)上進(jìn)一步分析了其在電機(jī)轉(zhuǎn)子位置估算中的實(shí)現(xiàn)方法。然后基于上述的理論分析和仿真模型,從軟硬件兩個(gè)方面著手設(shè)計(jì)了系統(tǒng)實(shí)驗(yàn)平臺(tái)。硬件部分首先介紹整體框架,隨后對(duì)電源電路、電流采樣電路、過(guò)流保護(hù)電路、MOS管驅(qū)動(dòng)電路等方面作了深入細(xì)致的分析。軟件方面從系統(tǒng)主程序設(shè)計(jì)入手,介紹了MOS管上電自檢、電機(jī)啟動(dòng)、霍爾中斷服務(wù)程序、ADC中斷服務(wù)程序的功能與實(shí)現(xiàn),側(cè)重分析了ADC中斷服務(wù)程序中的SVPWM調(diào)制與相電流重構(gòu)子程序。最后將該系統(tǒng)應(yīng)用于輪轂式無(wú)刷直流電機(jī),測(cè)試了電機(jī)啟動(dòng)和穩(wěn)態(tài)運(yùn)行時(shí)的相電流波形、霍爾信號(hào)、低調(diào)制區(qū)和中高調(diào)制區(qū)的三相PWM調(diào)制波形,對(duì)比了實(shí)際A相電流和重構(gòu)A相電流,并用測(cè)功機(jī)測(cè)試了兩種驅(qū)動(dòng)方式下的電機(jī)負(fù)載特性曲線。測(cè)試結(jié)果表明,本文提出的相電流重構(gòu)方法可以實(shí)現(xiàn)0-1.15調(diào)制比范圍內(nèi)的相電流重構(gòu)。相對(duì)于傳統(tǒng)的六步換相控制方法,本文設(shè)計(jì)的矢量控制系統(tǒng)有效地降低了電機(jī)運(yùn)行噪聲、母線電流和轉(zhuǎn)矩脈動(dòng),提高了電機(jī)運(yùn)行效率。
[Abstract]:In short and short distance tools, electric bicycles occupy the market rapidly by the advantages of low price, friendly environment, convenient use and so on, showing good economic prospects and rapid development momentum. The brushless DC motor has the advantages of high efficiency and wide speed regulating range compared with other motor products. Car market. In recent years, in order to further improve the efficiency, the stute effect, the body stability and the user experience, the demand of the electric bicycle motor driver is increasing gradually. The traditional six step phase change control mode is obviously unable to meet the demand. Therefore, it is imminent to study the new generation of good performance drivers. This paper mainly studies the application of the magnetic field oriented control technology in Brushless DC motor control in electric vehicle. In the aspect of the structure of the brushless DC motor, the rotor structure and position sensor are introduced first. On this basis, the basic principle of the brushless DC motor is deeply analyzed with the traditional square wave control method as an example. The voltage and torque equations of the brushless DC motor in the DQ rotating coordinate system are derived. Then, the basic principle of space vector pulse width modulation (SVPWM) is emphatically introduced, and the practical side is introduced in detail from the judgment of the reference voltage vector sector, the calculation of the action time of the non zero basic voltage vector and the limit amplitude processing in the over modulation region. The method provides a theoretical basis for the construction of the follow-up simulation module and the programming of the program. The simulation model of the brushless motor vector control system is built on the Simulink platform of Matlab, and the construction of each module is introduced in detail. Then, two key problems in the design of this system are introduced: the phase current reconstruction of the non observable area and the base of the system. The linear interpolation algorithm is used to estimate the rotor position of the motor. The cause of the error in the non observable area is analyzed. A solution based on PWM phase shift is proposed. The simulation module of the standard phase current reconfiguration is built on the Simulink simulation platform. The feasibility of the phase current reconstruction scheme is verified. The linear interpolation is introduced in the estimation of the rotor position of the motor. On the basis of the basic principle of value algorithm, the realization method of the rotor position estimation is further analyzed. Then based on the theoretical analysis and simulation model mentioned above, the system experiment platform is designed from two aspects of hardware and software. The hardware part first introduces the whole frame, then the power circuit, current sampling circuit, over current. The protection circuit and the MOS tube drive circuit are analyzed in detail. From the main program design of the system, the function and Realization of the MOS tube electric self checking, the motor start, the Holzer interrupt service program and the ADC interrupt service program are introduced, and the SVPWM modulation and the phase current reconfiguration subroutine in the ADC interrupt service program are emphatically analyzed. Finally, the system is applied to the hub type brushless DC motor. The phase current waveform, Holzer signal, low modulation area and middle high modulation region PWM modulation waveform are tested. The actual A phase current and the reconfiguration of A phase current are compared, and the load characteristic curves of the motor under two driving modes are tested by the dynamometer. The test results show that the phase current reconstruction method proposed in this paper can realize the phase current reconstruction in the range of 0-1.15 modulation ratio. Compared with the traditional six step phase commutation control method, the vector control system designed in this paper can effectively reduce the motor operation noise, the bus current and torque pulse, and improve the efficiency of the motor.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM33;U484
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黨存祿;宋文超;張曉英;甘玲麗;;基于SVPWM控制的高功率因數(shù)整流器的研究[J];電氣自動(dòng)化;2010年04期
2 陳振;劉向東;靳永強(qiáng);戴亞平;;采用擴(kuò)展卡爾曼濾波磁鏈觀測(cè)器的永磁同步電機(jī)直接轉(zhuǎn)矩控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2008年33期
3 林瀟;潘雙夏;胡曉杭;;一種無(wú)位置傳感器BLDC零啟動(dòng)的純硬件實(shí)現(xiàn)方法[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2008年09期
4 曹建波;曹秉剛;王斌;許鵬;;電動(dòng)車用無(wú)刷直流電機(jī)無(wú)位置傳感器控制研究[J];西安交通大學(xué)學(xué)報(bào);2008年05期
5 高瑾;胡育文;黃文新;黃志峰;;基于反電勢(shì)形狀函數(shù)法的無(wú)刷直流電動(dòng)機(jī)直接轉(zhuǎn)矩控制[J];南京航空航天大學(xué)學(xué)報(bào);2007年04期
6 曹少泳;程小華;;一種無(wú)刷直流電動(dòng)機(jī)雙閉環(huán)調(diào)速系統(tǒng)仿真研究[J];微電機(jī);2007年02期
7 黃海宏;王海欣;張毅;;同步整流的基本原理[J];電氣電子教學(xué)學(xué)報(bào);2007年01期
8 劉思華;張樹(shù)春;;用擴(kuò)展卡爾曼濾波器估計(jì)無(wú)刷直流電機(jī)轉(zhuǎn)子位置和轉(zhuǎn)速[J];微電機(jī)(伺服技術(shù));2006年06期
9 董富紅;楊春生;王輝;;無(wú)位置傳感器無(wú)刷直流電機(jī)磁鏈函數(shù)控制方法[J];微電機(jī)(伺服技術(shù));2006年06期
10 馮江華;許峻峰;;基于定子磁鏈自適應(yīng)觀測(cè)的永磁同步電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)[J];中國(guó)電機(jī)工程學(xué)報(bào);2006年12期
相關(guān)博士學(xué)位論文 前2條
1 薛玉春;電動(dòng)汽車驅(qū)動(dòng)和轉(zhuǎn)向系統(tǒng)的振動(dòng)與驅(qū)動(dòng)電機(jī)的可靠性研究[D];吉林大學(xué);2007年
2 韋鯤;永磁無(wú)刷直流電機(jī)電磁轉(zhuǎn)矩脈動(dòng)抑制技術(shù)的研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前6條
1 王長(zhǎng)愷;基于SVPWM技術(shù)的感應(yīng)電機(jī)變頻調(diào)速系統(tǒng)的DSP編程與實(shí)驗(yàn)研究[D];華南理工大學(xué);2011年
2 楊光;電動(dòng)車無(wú)刷直流電機(jī)無(wú)位置傳感器控制研究[D];天津大學(xué);2008年
3 王若峰;基于DSP的直流無(wú)刷電機(jī)控制系統(tǒng)研究[D];哈爾濱工程大學(xué);2008年
4 肖春燕;電壓空間矢量脈寬調(diào)制技術(shù)的研究及其實(shí)現(xiàn)[D];南昌大學(xué);2005年
5 胡寶興;基于DSP的電動(dòng)自行車用無(wú)刷直流電機(jī)控制系統(tǒng)的研究[D];浙江工業(yè)大學(xué);2005年
6 白浩;永磁無(wú)刷直流電動(dòng)機(jī)控制系統(tǒng)的研究[D];河北工業(yè)大學(xué);2004年
,本文編號(hào):2086444
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2086444.html