兆瓦級垂直軸風(fēng)力機(jī)傳動軸系與制動系統(tǒng)研究
本文選題:垂直軸風(fēng)力發(fā)電機(jī) + 兆瓦級; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:作為大型垂直軸風(fēng)力發(fā)電機(jī)的重要組成部分,傳動系統(tǒng)和制動系統(tǒng)對整個風(fēng)電機(jī)組的運(yùn)行和安全起著至關(guān)重要的作用。目前市場上大功率垂直軸風(fēng)力機(jī)所占份額很少,對于大功率垂直軸風(fēng)力機(jī)的傳動系統(tǒng)尚無固定的設(shè)計體系,而且多數(shù)垂直軸風(fēng)力機(jī)無變槳系統(tǒng),隨之而來的問題是所需的機(jī)械制動力矩很大。為解決此問題,本文將對兆瓦級垂直軸風(fēng)力機(jī)的傳動系統(tǒng)及制動系統(tǒng)進(jìn)行研究。為了解決兆瓦級垂直軸風(fēng)力機(jī)傳動系統(tǒng)設(shè)計的困難,對比了多種風(fēng)力機(jī)傳動方案,確定了一種最優(yōu)傳動結(jié)構(gòu)方案:整機(jī)為半直驅(qū)傳動形式,將增速器、發(fā)電機(jī)等置于地面附近安裝布置;軸承方案采用三級軸承支承,主軸承(Ⅰ級軸承)為轉(zhuǎn)盤軸承,上導(dǎo)軸承(Ⅱ級軸承)為調(diào)心滾子軸承,下導(dǎo)軸承(Ⅲ級軸承)為推力調(diào)心滾子軸承,上導(dǎo)軸承和下導(dǎo)軸承均采用剖分式軸承。為了獲得風(fēng)力機(jī)在不同工況下的載荷,采用Fluent數(shù)值模擬的方法對風(fēng)輪進(jìn)行了氣動特性的計算,并根據(jù)載荷確定了傳動軸各段軸的結(jié)構(gòu)尺寸。為使軸系結(jié)構(gòu)滿足設(shè)計要求,對其進(jìn)行了強(qiáng)度校核、疲勞分析和模態(tài)分析。為了解決大功率風(fēng)力機(jī)制動可靠的問題,建立了制動系統(tǒng)模型,對安裝在不同位置的制動器進(jìn)行了受力分析。針對不同的制動工況,對機(jī)械制動系統(tǒng)的方案進(jìn)行了制動力矩及制動時間等相關(guān)計算,確定了高速軸+低速軸兩級制動方案,并利用ANSYS軟件對制動器摩擦副進(jìn)行了溫度場及應(yīng)力場的分析。采用等時間間隔的循環(huán)加載熱流密度的方法,分別對額定風(fēng)速下正常制動工況和棄風(fēng)風(fēng)速下緊急制動工況時低速軸和高速軸的摩擦副溫度場進(jìn)行模擬計算。結(jié)果表明,制動盤溫度分布不均勻,高溫區(qū)主要集中在摩擦接觸表面。制動襯片溫度相較制動盤高出很多,表面溫度分布較均勻。兩種工況下制動盤和制動襯片溫度分布相似,緊急工況溫度相對較高。對制動器分別進(jìn)行了純機(jī)械應(yīng)力分析和熱應(yīng)力分析。通過應(yīng)力場分析,可以判斷制動盤是否會產(chǎn)生熱裂紋或者失效,為制動盤的改進(jìn)設(shè)計提供參考。研究表明,由溫升引起的熱應(yīng)力對制動器的應(yīng)力場占主導(dǎo)作用,且高應(yīng)力區(qū)主要集中在摩擦區(qū)域。
[Abstract]:As an important part of the large vertical axis wind turbine, the transmission and braking systems play an important role in the operation and safety of the whole wind turbine. At present, the large power vertical axis wind turbines have little share in the market, and there is no fixed design system for the transmission system of the high-power vertical axis wind turbines. In order to solve this problem, the transmission system and braking system of megawatt vertical axis wind turbines are studied in this paper. In order to solve the difficulties of the transmission system of MW vertical axis wind turbines, a variety of wind turbine transmission schemes are compared. An optimal drive structure scheme is established: the whole machine is a semi straight drive drive, and the speed increase device and generator are installed near the ground; the bearing scheme is supported by three stages bearing, the main bearing (grade I bearing) is a rotating disk bearing, the guide bearing (second grade bearing) is a roller bearing and the lower guide bearing (grade III bearing) is a thrust roller. The bearing, the upper guide bearing and the lower guide bearing all adopt split bearing. In order to obtain the load of the wind turbine under different working conditions, the aerodynamic characteristics of the wind wheel are calculated by the Fluent numerical simulation method, and the structure size of the shaft of the drive shaft is determined according to the load, so that the axial structure meets the design requirements and carries out the strength. Check, fatigue analysis and modal analysis. In order to solve the problem of high power wind turbine braking reliability, the brake system model is established, and the force analysis is carried out on the brake installed in different positions. According to the different braking conditions, the braking torque and the braking time are calculated for the scheme of the mechanical brake system, and the high speed is determined. The temperature field and stress field of the brake friction pair are analyzed with the two stage braking scheme of shaft + low speed shaft, and the ANSYS software is used to analyze the temperature field and stress field of the brake friction pair. The results show that the temperature distribution of the brake disc is not uniform, the high temperature area is mainly concentrated on the friction contact surface. The temperature of the brake lining is much higher than the brake disc, and the surface temperature distribution is more uniform. The temperature distribution of the brake disc and the brake lining is similar in the two working conditions, and the emergency temperature is relatively high. The mechanical stress analysis and thermal stress analysis. Through the stress field analysis, it can be used to determine whether the brake disc will produce hot cracks or failure, and provide reference for the improved design of the brake disc. The research shows that the thermal stress caused by the temperature rise is dominant to the stress field of the brake, and the high stress zone is mainly concentrated in the friction area.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅勇水;周民強(qiáng);陳棋;崔峰;劉偉江;;兆瓦級風(fēng)力發(fā)電機(jī)組傳動系統(tǒng)動態(tài)特性研究[J];振動與沖擊;2015年21期
2 李慧新;呂杏梅;王靛;巫發(fā)明;王磊;;彈性支撐下風(fēng)電機(jī)組傳動系統(tǒng)結(jié)構(gòu)動力分析[J];動力學(xué)與控制學(xué)報;2015年04期
3 毛淳誠;林勝洋;曹廣啟;;大型風(fēng)電機(jī)組主軸強(qiáng)度分析[J];風(fēng)能;2015年05期
4 張春友;蘇培亮;毛曉娥;龍凱;;直驅(qū)型風(fēng)力發(fā)電機(jī)的主軸強(qiáng)度研究[J];機(jī)械設(shè)計;2015年02期
5 陳開源;李柏青;朱秀娟;王亞利;;基于ANSYS的轉(zhuǎn)軸模態(tài)分析[J];機(jī)械工程師;2014年12期
6 黃健萌;高會凱;;盤式制動器熱力耦合分析的研究進(jìn)展[J];中國工程機(jī)械學(xué)報;2013年04期
7 孫超;高飛;符蓉;農(nóng)萬華;;制動閘片結(jié)構(gòu)特征的表征方法研究[J];鐵道機(jī)車車輛;2012年04期
8 陳學(xué);;新能源產(chǎn)業(yè)發(fā)展現(xiàn)狀及傳統(tǒng)能源行業(yè)戰(zhàn)略選擇淺析[J];石油商技;2012年02期
9 楊鶯,王剛;基于三維模型的機(jī)車制動盤瞬態(tài)溫度場仿真[J];計算機(jī)仿真;2005年10期
10 裴大明,馮平法,郁鼎文;基于有限元方法的主軸軸承跨距優(yōu)化[J];機(jī)械設(shè)計與制造;2005年10期
相關(guān)會議論文 前1條
1 高斯;時洪奎;;直驅(qū)式風(fēng)電機(jī)組主軸系設(shè)計與評估[A];中國農(nóng)機(jī)工業(yè)協(xié)會風(fēng)能設(shè)備分會《風(fēng)能產(chǎn)業(yè)》(2014年第12期)[C];2015年
相關(guān)博士學(xué)位論文 前1條
1 陶慶;兆瓦級風(fēng)能發(fā)電機(jī)組整機(jī)及關(guān)鍵部件動態(tài)特性研究[D];新疆大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 趙越;兆瓦級升阻復(fù)合型垂直軸風(fēng)力機(jī)氣動特性及結(jié)構(gòu)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 楊威;風(fēng)電主軸制動器摩擦副熱力耦合及其模型可信性評估[D];南昌大學(xué);2016年
3 尹偉;大功率直葉片垂直軸風(fēng)力機(jī)氣動特性及風(fēng)輪構(gòu)型研究[D];哈爾濱工業(yè)大學(xué);2015年
4 楊源;制動盤尺寸對盤面溫度場及應(yīng)力場的影響[D];大連交通大學(xué);2015年
5 章丹亭;風(fēng)機(jī)主軸制動器及其摩擦副疲勞壽命數(shù)值分析[D];南昌大學(xué);2015年
6 史文博;H型垂直軸風(fēng)電機(jī)組主軸系統(tǒng)結(jié)構(gòu)分析方法的研究[D];重慶大學(xué);2015年
7 王磊;垂直軸阻力差型風(fēng)機(jī)的氣動制動研究[D];西北大學(xué);2014年
8 胡育勇;風(fēng)機(jī)主軸制動器摩擦副熱—力耦合有限元分析[D];南昌大學(xué);2014年
9 丁習(xí)坤;風(fēng)電機(jī)組傳動系統(tǒng)動態(tài)性能研究及疲勞分析[D];新疆大學(xué);2011年
10 袁瑩瑩;水平軸風(fēng)力發(fā)電機(jī)組制動系統(tǒng)的研究[D];華北電力大學(xué)(北京);2010年
,本文編號:2044954
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2044954.html