天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

基于云平臺(tái)的風(fēng)電機(jī)組軸承的故障診斷研究

發(fā)布時(shí)間:2018-06-14 13:48

  本文選題:風(fēng)電機(jī)組軸承 + 故障診斷; 參考:《新疆大學(xué)》2017年碩士論文


【摘要】:隨著全球風(fēng)力發(fā)電行業(yè)快速發(fā)展,風(fēng)電機(jī)組運(yùn)維和故障診斷市場需求逐步增加,而風(fēng)電機(jī)組軸承作為風(fēng)電機(jī)組關(guān)鍵部件之一,其正常、穩(wěn)定運(yùn)行直接影響著風(fēng)電機(jī)組能量轉(zhuǎn)化率和機(jī)組其他部件健康狀態(tài)。振動(dòng)監(jiān)測是目前軸承狀態(tài)監(jiān)測故障診斷的常用方法,風(fēng)電機(jī)組數(shù)量多、振動(dòng)測點(diǎn)多、采樣率高造成數(shù)據(jù)量非常大,達(dá)到PB甚至TB,給數(shù)據(jù)傳輸、分析和診斷提出了挑戰(zhàn)。隨著互聯(lián)網(wǎng)快速發(fā)展,各種大數(shù)據(jù)、云計(jì)算分析和處理新方法、新技術(shù)出現(xiàn),大數(shù)據(jù)分析主要基于小數(shù)據(jù)的探索。因此,本文提出了集成經(jīng)驗(yàn)?zāi)B(tài)分解與峭度系數(shù)和相關(guān)系數(shù)的關(guān)聯(lián)度提取方法,通過時(shí)域參數(shù)、AR模型參數(shù)、能量熵參數(shù)提取了軸承故障和正常軸承之間的特征值矩陣,將特征值輸入徑向基核函數(shù)的支持向量機(jī),訓(xùn)練故障嚴(yán)重程度的診斷模型,通過實(shí)驗(yàn)室軸承數(shù)據(jù)和風(fēng)電機(jī)組實(shí)際運(yùn)行軸承數(shù)據(jù),驗(yàn)證了模型故障識(shí)別的準(zhǔn)確率。通過對部分?jǐn)?shù)據(jù)探索和研究,提出了風(fēng)電機(jī)組軸承故障診斷云端化,運(yùn)用亞馬遜提供的AWS云計(jì)算平臺(tái),搭建基于AWS的風(fēng)電機(jī)組軸承故障診斷研究平臺(tái),將采用的分析方法向云端進(jìn)行算法的并行化和遷移,主要通過Python開發(fā)語言實(shí)現(xiàn)了多風(fēng)電場多臺(tái)機(jī)組振動(dòng)信號(hào)實(shí)時(shí)信號(hào)采集、傳輸和處理,同時(shí),針對每臺(tái)風(fēng)電機(jī)組軸承振動(dòng)信號(hào)歷史數(shù)據(jù)定期進(jìn)行批處理,將其故障診斷和識(shí)別模型迭代和更新,實(shí)現(xiàn)了風(fēng)機(jī)主軸承故障診斷專業(yè)化和定制化,驗(yàn)證和實(shí)現(xiàn)了風(fēng)電機(jī)組故障診斷與云計(jì)算技術(shù)結(jié)合,對風(fēng)電機(jī)組運(yùn)維和故障診斷等領(lǐng)域具有較強(qiáng)的指導(dǎo)意義和參考價(jià)值。
[Abstract]:With the rapid development of the global wind power industry, the market demand for wind turbine operation and fault diagnosis is gradually increasing. As one of the key components of wind turbine, the bearing of wind turbine is normal. Stable operation directly affects the energy conversion rate of wind turbine and the health state of other components of wind turbine. Vibration monitoring is a commonly used method for fault diagnosis of bearing condition monitoring at present. The large amount of data caused by the large number of wind turbine units, the large number of vibration measuring points and the high sampling rate lead to the achievement of PB or even TB, which poses a challenge to data transmission, analysis and diagnosis. With the rapid development of the Internet, all kinds of big data, cloud computing analysis and processing new methods, new technologies appear, big data analysis is mainly based on the exploration of small data. Therefore, this paper presents a method of extracting correlation degree by integrating empirical mode decomposition with kurtosis coefficient and correlation coefficient. The eigenvalue matrix between bearing fault and normal bearing is extracted by time domain parameter AR model parameter and energy entropy parameter. The eigenvalue is input into the support vector machine of radial basis function and the diagnosis model of fault severity is trained. The accuracy of fault identification of the model is verified by the laboratory bearing data and the actual running bearing data of wind turbine. Through the exploration and research of some data, the paper puts forward the cloud diagnosis of wind turbine bearing fault, and builds the research platform of wind turbine bearing fault diagnosis based on AWS by using the AWS cloud computing platform provided by Amazon. The algorithm is parallelized and migrated to the cloud, and the real-time signal acquisition, transmission and processing of vibration signal of multi-wind farm and multi-unit are realized by Python development language, at the same time, According to the historical data of bearing vibration signal of each wind turbine unit, batch processing is carried out periodically, and the fault diagnosis and identification model is iterated and updated to realize the specialization and customization of fault diagnosis of main bearing of fan. The combination of wind turbine fault diagnosis and cloud computing technology is verified and realized, which has strong guiding significance and reference value for wind turbine operation and fault diagnosis.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 薛禹勝;賴業(yè)寧;;大能源思維與大數(shù)據(jù)思維的融合(一)大數(shù)據(jù)與電力大數(shù)據(jù)[J];電力系統(tǒng)自動(dòng)化;2016年01期

2 王相偉;史玉良;張建林;梁波;程翠萍;;基于Hadoop的用電信息大數(shù)據(jù)計(jì)算服務(wù)及應(yīng)用[J];電網(wǎng)技術(shù);2015年11期

3 宋亞奇;周國亮;朱永利;李莉;王德文;;云平臺(tái)下并行總體經(jīng)驗(yàn)?zāi)B(tài)分解局部放電信號(hào)去噪方法[J];電工技術(shù)學(xué)報(bào);2015年18期

4 羅賢縉;岳黎明;甄成剛;;風(fēng)電場數(shù)據(jù)中心Hadoop云平臺(tái)作業(yè)調(diào)度算法研究[J];計(jì)算機(jī)工程與應(yīng)用;2015年15期

5 孟祥萍;周來;王暉;紀(jì)秀;;基于hadoop云平臺(tái)的智能電網(wǎng)MapReduce數(shù)據(jù)計(jì)算技術(shù)研究[J];電測與儀表;2015年10期

6 王軍輝;賈嶸;譚泊;;基于EEMD和模糊C均值聚類的風(fēng)電機(jī)組齒輪箱故障診斷[J];太陽能學(xué)報(bào);2015年02期

7 王德文;孫志偉;;電力用戶側(cè)大數(shù)據(jù)分析與并行負(fù)荷預(yù)測[J];中國電機(jī)工程學(xué)報(bào);2015年03期

8 彭小圣;鄧迪元;程時(shí)杰;文勁宇;李朝暉;牛林;;面向智能電網(wǎng)應(yīng)用的電力大數(shù)據(jù)關(guān)鍵技術(shù)[J];中國電機(jī)工程學(xué)報(bào);2015年03期

9 宋亞奇;周國亮;朱永利;李莉;王劉旺;王德文;;云平臺(tái)下輸變電設(shè)備狀態(tài)監(jiān)測大數(shù)據(jù)存儲(chǔ)優(yōu)化與并行處理[J];中國電機(jī)工程學(xué)報(bào);2015年02期

10 潘海寧;張軍;秦明;馮健;李明輝;;基于能量譜特征的變速風(fēng)機(jī)振動(dòng)調(diào)制信號(hào)的檢測方法[J];中國電機(jī)工程學(xué)報(bào);2014年S1期

相關(guān)博士學(xué)位論文 前1條

1 胡愛軍;Hilbert-Huang變換在旋轉(zhuǎn)機(jī)械振動(dòng)信號(hào)分析中的應(yīng)用研究[D];華北電力大學(xué)(河北);2008年

相關(guān)碩士學(xué)位論文 前2條

1 楊繼明;基于Hadoop云平臺(tái)風(fēng)電機(jī)組振動(dòng)數(shù)據(jù)處理的技術(shù)研究[D];華北電力大學(xué);2015年

2 高子U,

本文編號(hào):2017605


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/2017605.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶47b78***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com