分布式模型預測控制在新能源電力系統(tǒng)負荷頻率控制中的應用研究
本文選題:負荷頻率控制 + 規(guī);L電場 ; 參考:《華北電力大學(北京)》2017年博士論文
【摘要】:負荷頻率控制(Load Frequency Control,LFC)旨在發(fā)電量實時自動跟蹤電力系統(tǒng)負荷的變化,維持發(fā)電功率和負載功率的平衡,使電力系統(tǒng)頻率保持為規(guī)定值,是保證電能質量的重要手段。隨著世界能源戰(zhàn)略格局的變化,規(guī);娘L電場逐步投入運行,由于風電具有較強的隨機性和間歇性,規(guī)模化的風電場給互聯(lián)電力系統(tǒng)有功平衡帶來較大的影響,需準確掌握規(guī);L電并入互聯(lián)電力系統(tǒng)LFC后電力系統(tǒng)的頻率特征,進而研究負荷頻率控制方案與措施,以適應傳統(tǒng)電力系統(tǒng)LFC向規(guī)模化風電場介入后的現(xiàn)代互聯(lián)電力系統(tǒng)LFC的轉變。本文在深入分析規(guī)模化風電場介入后的多區(qū)域互聯(lián)電力系統(tǒng)動態(tài)特征的基礎上,采用分布式模型預測控制理論分析與數(shù)值仿真結合的方法,對含規(guī);L電場的多區(qū)域互聯(lián)電力系統(tǒng)負荷頻率控制問題開展深入研究。本文的創(chuàng)新性研究內容包括:(1)單臺風機容量和風電場總裝機容量較小情況下,提出規(guī);L電場與常規(guī)機組在同一區(qū)域的互聯(lián)電力系統(tǒng)LFC結構,風電機組根據當前風速通過調節(jié)槳距角實現(xiàn)最大風能輸出,風電場的發(fā)電量作為常規(guī)機組的補充,跟蹤負荷變化由常規(guī)機組來實現(xiàn)。綜合槳距角控制系統(tǒng)模型、風力機模型和變速恒頻發(fā)電機模型,建立由風電場、常規(guī)機組構成的互聯(lián)電力系統(tǒng)LFC分布式數(shù)學模型。(2)單臺風機容量和風電場總裝機容量較大情況下,提出風電場處于單獨區(qū)域互聯(lián)電力系統(tǒng)LFC結構,與常規(guī)機組共同跟蹤負荷變化,保持系統(tǒng)頻率穩(wěn)定。構建了含規(guī);L電場互聯(lián)電力系統(tǒng)LFC分布式數(shù)學模型。(3)研究不同風電介入互聯(lián)電力系統(tǒng)LFC結構下不同的控制策略,提出控制器設計方法。針對風電場與常規(guī)機組處于同一區(qū)域的互聯(lián)電力系統(tǒng),提出分布式模型預測控制(Distributed Model Predictive Control,DMPC),并考慮發(fā)電機變化速率約束(Generation Rate Constraints,GRCs)和閥門位置約束。以四區(qū)域互聯(lián)電力系統(tǒng)為例,系統(tǒng)外界負荷發(fā)生變化時,DMPC控制器與集中模型預測控制算法相比,DMPC在頻率恢復速度和穩(wěn)定性顯示出良好的優(yōu)越性能的同時,計算負擔小,運算速度快也是一大優(yōu)勢。(4)針對規(guī);L電場單獨區(qū)域的互聯(lián)電力系統(tǒng),提出協(xié)同DMPC控制算法。研究不同風速條件下各個區(qū)域的控制目標,設計不同目標函數(shù)。同時,要求常規(guī)機組滿足GRC和閥門位置約束,風電機組還需滿足風速約束。以四區(qū)域互聯(lián)電力系統(tǒng)為例,協(xié)同DMPC控制策略能有效地協(xié)調風電機組與常規(guī)機組之間出力,控制性能良好,能有效控制系統(tǒng)頻率波動在允許范圍之內。(5)研究由于系統(tǒng)運行工況變化帶來系統(tǒng)模型參數(shù)發(fā)生變化和系統(tǒng)結構變化引起的頻率波動問題,分別以傳統(tǒng)互聯(lián)電力系統(tǒng)和含規(guī)模化風電場的互聯(lián)電力系統(tǒng)為平臺,構建魯棒分布式模型預測控制(Robust Distributed Model Predictive Control,RDMPC)算法。RDMPC將優(yōu)化問題轉化成‘min-max’問題,等效成求解上限問題,利用線性矩陣不等式進行迭代求解得到最優(yōu)控制率。所有控制區(qū)域控制量最終能夠實現(xiàn)納什平衡且接近Pareto最優(yōu)解。與DMPC對比,RDMPC在存在不確定性情況下具有更好地魯棒性,體現(xiàn)出應用的可行性和有效性。
[Abstract]:Load Frequency Control (LFC) is designed to automatically track the changes of power system load in real time, maintain the balance of power and load power, keep the power system frequency as the prescribed value, and be an important means to ensure the quality of power. In operation, due to the strong randomness and intermittency of wind power, the large-scale wind farm has a great influence on the active balance of the interconnected power system. It is necessary to accurately grasp the frequency characteristics of the power system after the large-scale wind power is incorporated into the interconnected power system LFC, and then study the load frequency control schemes and measures to adapt to the traditional power system LFC. The transformation of the modern interconnected power system LFC after the intervention of the large-scale wind farm. Based on the in-depth analysis of the dynamic characteristics of the multi region interconnected power system after the intervention of the large-scale wind farm, this paper uses the method of combining the distributed model predictive control theory analysis and the numerical simulation to the multi region interconnected power containing the large-scale wind farm. The innovative research contents of this paper are as follows: (1) the LFC structure of the interconnected power system of the scale wind farm and the conventional unit in the same area is proposed under the case of the single typhoon capacity and the small wind farm assembly capacity, and the wind turbine group can achieve the maximum by adjusting the pitch angle according to the current wind speed. Wind power output, wind power generation capacity as a supplement to conventional units, tracking load changes are realized by conventional units. Integrated pitch angle control system model, wind turbine model and variable speed constant frequency generator model, LFC distributed mathematical model of interconnected power system composed of wind farms and conventional units. (2) single typhoon capacity and wind power In the case of large field assembly capacity, it is proposed that the wind farm is in the LFC structure of the interconnected power system in a separate area, tracking the load change with the conventional unit and keeping the system frequency stable. A distributed LFC mathematical model of the large-scale wind farm interconnected power system is constructed. (3) the study is different from the LFC structure of the wind power interconnected power system. Control strategy, a controller design method is proposed. A distributed model predictive control (Distributed Model Predictive Control, DMPC) is proposed for an interconnected power system in the same area as a wind farm and a conventional unit, considering the variation rate constraint of the generator (Generation Rate Constraints, GRCs) and the valve position constraints. The four area interconnection is interconnected. As an example of the power system, when the system external load changes, the DMPC controller is compared with the centralized model predictive control algorithm. DMPC shows a good performance in the frequency recovery speed and stability, while the calculation burden is small and the operation speed is fast. (4) the interconnected power system in the separate area of the large-scale wind farm is proposed. The cooperative DMPC control algorithm is used to study the control targets of each area under different wind speed conditions and design the different target functions. At the same time, the conventional units are required to meet the GRC and valve position constraints. The wind turbines need to meet the wind speed constraints. The four area interconnected power system is taken as an example, and the coordinated DMPC control strategy can effectively coordinate the wind turbine and the routine. The output of the unit is well controlled and the frequency fluctuation of the system can be effectively controlled within the allowable range. (5) research on the frequency fluctuation caused by the change of system model parameters and the change of system structure caused by the change of the operating condition of the system, and the interconnected power system with the traditional interconnected power system and the scale wind farm, respectively. On the platform, the Robust Distributed Model Predictive Control (RDMPC) algorithm.RDMPC is constructed to transform the optimization problem into the 'min-max' problem, which is equivalent to solving the upper limit problem. The optimal control rate is obtained by using linear matrix inequalities to get the optimal control rate. All control area control quantities can eventually realize Nash. It is balanced and close to the Pareto optimal solution. Compared with DMPC, RDMPC has better robustness in the presence of uncertainty, and shows the feasibility and effectiveness of the application.
【學位授予單位】:華北電力大學(北京)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TM712
【參考文獻】
相關期刊論文 前10條
1 鄭毅;李少遠;;網絡信息模式下分布式系統(tǒng)協(xié)調預測控制[J];自動化學報;2013年11期
2 吳云亮;孫元章;徐箭;楊軍;;基于多變量廣義預測理論的互聯(lián)電力系統(tǒng)負荷頻率協(xié)調控制體系[J];電工技術學報;2012年09期
3 杜威;姜齊榮;陳蛟瑞;;微電網電源的虛擬慣性頻率控制策略[J];電力系統(tǒng)自動化;2011年23期
4 李立成;葉林;;變風速下永磁直驅風電機組頻率—轉速協(xié)調控制策略[J];電力系統(tǒng)自動化;2011年17期
5 劉向杰;閆東梅;展曉磊;;微粒群優(yōu)化負荷頻率控制[J];電力系統(tǒng)及其自動化學報;2010年03期
6 曾靜;薛定宇;袁德成;;分布式模型預測控制方法的研究[J];系統(tǒng)仿真學報;2008年21期
7 張建武;劉向杰;黃宏清;;電力市場環(huán)境下的新型負荷頻率控制方法[J];電網技術;2008年12期
8 孔蓮芳;羅天祥;吳捷;;基于狀態(tài)收縮約束的模型預測負荷頻率控制[J];中國電機工程學報;2007年07期
9 趙菁,彭慧敏,謝維廉;基于模糊控制的自動發(fā)電控制[J];貴州工業(yè)大學學報(自然科學版);2003年01期
10 孟祥萍,薛昌飛,張化光;多區(qū)域互聯(lián)電力系統(tǒng)的PI滑模負荷頻率控制[J];中國電機工程學報;2001年03期
相關碩士學位論文 前1條
1 張瑞芳;基于LMI的魯棒預測控制[D];中南大學;2007年
,本文編號:1959068
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1959068.html