電動汽車無線充電系統(tǒng)效率特性研究
本文選題:電動汽車 + 無線充電; 參考:《山東大學》2017年碩士論文
【摘要】:電動汽車的大規(guī)模普及有助于緩解目前我國面臨的空氣污染和能源不足的問題。充電樁的不足卻大大地阻礙了電動汽車的普及進度。相較于傳統(tǒng)的有線充電裝置,電動汽車無線充電系統(tǒng)具有占地少、安全度高、智能化水平高等優(yōu)勢,可以加快電動汽車的推廣進程。但電動汽車無線充電系統(tǒng)依然面臨著額定功率較小,系統(tǒng)效率較低的問題,對電動汽車無線充電系統(tǒng)傳輸特性的研究具有重要的現(xiàn)實意義。本文通過對諧振式電動汽車無線充電系統(tǒng)的原理研究,找到影響系統(tǒng)傳輸功率特性和效率特性的相關參數(shù)。通過對各個參數(shù)與系統(tǒng)功率和系統(tǒng)效率的關系曲線的分析研究,找到影響傳輸性能最重要的兩個因素:磁耦合結構和系統(tǒng)控制策略。借助ANSYS電磁仿真軟件對不同線圈形狀、不同線圈尺寸、有無磁芯等結構的磁耦合機構進行建模,并繪制出在磁耦合機構發(fā)生水平偏移時耦合系數(shù)的改變情況。篩選出性能較好的磁耦合結構,為實驗平臺的搭建提供指導。分別對調壓式控制策略、調頻式控制策略、調占空比式控制策略的無線充電系統(tǒng)建立Simulink仿真模型,得到不同控制策略下系統(tǒng)的傳輸特性曲線。重點對采用調頻策略時,高耦合系數(shù)下和低等效負載阻值下出現(xiàn)的功率傳輸曲線和效率傳輸曲線的頻率分裂現(xiàn)象加以研究。在實驗平臺的搭建過程中,本文詳細論述了直流斬波環(huán)節(jié)、全橋逆變環(huán)節(jié)、磁耦合機構、高頻整流環(huán)節(jié)、功率開關管驅動電路的設計過程,并針對電感磁芯材料、二極管型號、功率開關管型號、線圈導線的選擇做了分析和說明。選用STM32f407芯片開發(fā)系統(tǒng)的控制電路,并通過無線通信系統(tǒng)連接本裝置的控制系統(tǒng)與車載電池管理系統(tǒng)(BMS)。在實驗環(huán)節(jié),本文搭建的樣機在20cm垂直間隔下,最大傳輸功率達到了 6kW,最大傳輸效率達到90%左右。并通過實驗對前文有關磁耦合結構和控制策略部分的仿真結論進行了驗證,對比三種控制策略下的系統(tǒng)傳輸性能并提出需要進一步提高和完善的方法。
[Abstract]:The large-scale popularization of electric vehicles helps to alleviate the problem of air pollution and energy shortage in our country. The shortage of the charging pile has greatly hindered the popularization of electric vehicles. Compared with the traditional cable charging device, the electric vehicle wireless charging system has the advantages of less land occupation, high safety and higher intelligence. In order to accelerate the promotion process of electric vehicles, the wireless charging system of electric vehicles still faces the problem of low rated power and low system efficiency. It is of great practical significance to study the transmission characteristics of the wireless charging system of electric vehicles. This paper finds the influence system through the study of the principle of the wireless charging system of the resonant electric vehicle. Through the analysis and study of the relation curves of the power and efficiency of the system, the two factors that affect the transmission performance are found: the magnetic coupling structure and the system control strategy. With the aid of ANSYS electromagnetic simulation software, the shape of different coils, the size of the coils, and the magnetic field are magnetic. The magnetic coupling mechanism of the core structure is modeled and the coupling coefficient changes when the magnetic coupling mechanism has horizontal migration. The magnetic coupling structure with better performance is selected to provide guidance for the construction of the experimental platform. The wireless charging system of the control strategy, the FM control strategy and the air ratio control strategy are respectively used. The Simulink simulation model is established and the transmission characteristic curve of the system under different control strategies is obtained. The focus is on the study of the power transmission curve and the frequency splitting phenomenon of the efficiency transmission curve under the high coupling coefficient and low equivalent load when the frequency modulation strategy is adopted. The design process of DC chopper link, full bridge inverter link, magnetic coupling mechanism, high frequency rectifier link, power switch tube drive circuit, and the selection of inductor core material, diode model, power switch tube model and coil conductor are analyzed and explained. The control circuit of STM32f407 chip development system is selected, and the wireless communication system is adopted. In the experiment link, the maximum transmission power of the prototype is up to 6kW and the maximum transmission efficiency reaches about 90% at the 20cm vertical interval, and the simulation conclusions about the magnetic coupling structure and the control strategy part of the previous article are verified by the experiment, and the contrast three is compared. The transmission performance of the system under different control strategies is proposed.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U469.72;TM724
【相似文獻】
相關期刊論文 前10條
1 金旭明;起動和充電系統(tǒng)檢修注意事項[J];汽車電器;2002年03期
2 疏澤民;;充電系統(tǒng)故障的快速判斷[J];河北農(nóng)機;2007年03期
3 李彥輝;;關于汽車充電系統(tǒng)的檢修之我見[J];汽車維修技師;2009年01期
4 王智慧;胡超;戴欣;唐春森;;基于推挽拓撲的非接觸充電系統(tǒng)設計[J];電源技術;2011年07期
5 李建華;陳水妹;;手機無線充電系統(tǒng)設計[J];咸寧學院學報;2011年12期
6 鄭志恒;;電動車充電系統(tǒng)建設的探索[J];產(chǎn)業(yè)與科技論壇;2011年23期
7 劉景連;;摩托車充電系統(tǒng)的檢測[J];摩托車;2012年12期
8 具小平;楊構;王波;;一種低成本智能交流充電系統(tǒng)的研發(fā)[J];南方電網(wǎng)技術;2013年02期
9 倪國旗;王麗娜;彭欣;;一種無線充電系統(tǒng)的設計[J];信息化研究;2013年03期
10 林景湛;;充電系統(tǒng)的故障判斷與排除[J];現(xiàn)代化農(nóng)業(yè);1980年06期
相關會議論文 前4條
1 陳宇;孫躍;王智慧;蘇玉剛;唐春森;;電動車無線充電系統(tǒng)的空載保護與負載檢測[A];2013年中國電機工程學會年會論文集[C];2013年
2 黃萍;;歐盟電動汽車充電系統(tǒng)標準解析[A];市場踐行標準化——第十一屆中國標準化論壇論文集[C];2014年
3 周躍進;汪云甲;夏雯;;一種新型的煤礦井下礦燈充電系統(tǒng)設計[A];中國自動化學會控制理論專業(yè)委員會C卷[C];2011年
4 齊國光;郟航;;新型車載充電系統(tǒng)的智能方法與實現(xiàn)[A];1995年中國智能自動化學術會議暨智能自動化專業(yè)委員會成立大會論文集(上冊)[C];1995年
相關碩士學位論文 前10條
1 周曉明;無線充電系統(tǒng)的研究與設計[D];天津理工大學;2015年
2 戴作財;功率實時匹配光伏充電系統(tǒng)的研究[D];浙江師范大學;2015年
3 尤勇;基于DSP控制的電動汽車充電系統(tǒng)的研究及實現(xiàn)[D];電子科技大學;2014年
4 章旦e,
本文編號:1901845
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1901845.html