基于聚合經(jīng)驗?zāi)B(tài)分解的電壓閃變監(jiān)測技術(shù)研究
本文選題:電壓閃變 + 聚合經(jīng)驗?zāi)B(tài)分解; 參考:《山東理工大學(xué)》2017年碩士論文
【摘要】:隨著電力電子技術(shù)和新能源技術(shù)的發(fā)展,電網(wǎng)中非線性負(fù)荷日益增多,造成眾多電能質(zhì)量問題。電壓波動與閃變正是其中重要指標(biāo)之一。因此研究電壓波動與閃變具有十分重要意義。本文首先研究了電壓波動與閃變特征參數(shù)及常用的電壓閃變檢測方法(平方檢測法、小波分解與同步檢測法、希爾伯特-黃檢測法)的優(yōu)點和缺點。在此基礎(chǔ)上,本文提出了一種基于聚合經(jīng)驗?zāi)B(tài)分解的電壓閃變檢測方法,該算法首先采用希爾伯特變換提取電壓閃變信號的包絡(luò),然后利用聚合經(jīng)驗?zāi)B(tài)分解消噪法消除包絡(luò)信號中的噪聲,最后采用聚合經(jīng)驗?zāi)B(tài)分解對消噪后包絡(luò)信號進(jìn)行分解,提取調(diào)幅波的特征信息。電壓閃變的開始與結(jié)束時間也可以精確求出;贛ATLAB仿真電壓閃變信號,并分別采用聚合經(jīng)驗?zāi)B(tài)檢測法與常用檢測法提取閃變特征信息。通過分析對比檢測數(shù)據(jù),實驗結(jié)果表明,該方法可從時域與頻域兩方面對電壓閃變信號進(jìn)行分析,能夠準(zhǔn)確檢測出突變、非平穩(wěn)電壓閃變信號的時間、幅值及頻率,比小波法、希爾伯特-黃變換法等常用的閃變檢測方法檢測精度要高。設(shè)計了基于虛擬儀器技術(shù)的電壓閃變監(jiān)測系統(tǒng),包括硬件部分與軟件部分。硬件包括傳感器、信號調(diào)理電路、數(shù)據(jù)采集卡、計算機;采用LabVIEW和MATLAB混合編程的方法實現(xiàn)了系統(tǒng)的軟件設(shè)計,包括:信號定時采樣程序、消噪程序、調(diào)幅波提取程序,電壓參數(shù)檢測程序、短時間閃變值計算程序、數(shù)據(jù)存儲程序等。采用SQL Sever建立了電壓閃變測量數(shù)據(jù)庫,在LabVIEW中利用ADO技術(shù)訪問數(shù)據(jù)庫,采用LabVIEW中的ActiveX模塊以及SQL語言實現(xiàn)了大量實時數(shù)據(jù)的存儲和歷史數(shù)據(jù)的查詢。利用監(jiān)測系統(tǒng)對仿真的復(fù)雜電壓閃變信號進(jìn)行了分析,同時系統(tǒng)對用高精度波形發(fā)生器產(chǎn)生的帶噪聲單頻閃變信號進(jìn)行了監(jiān)測。最后,在智能電網(wǎng)研究中心的電機拖動實驗室,對現(xiàn)場電壓進(jìn)行實時的在線監(jiān)測,實驗表明該監(jiān)測系統(tǒng)運行穩(wěn)定,可靠性高。
[Abstract]:With the development of power electronics technology and new energy technology, the nonlinear load in power grid is increasing day by day, resulting in a lot of power quality problems. Voltage fluctuation and flicker is one of the important indexes. So it is very important to study voltage fluctuation and flicker. In this paper, the advantages and disadvantages of voltage fluctuation and flicker characteristic parameters and voltage flicker detection methods (squared detection, wavelet decomposition and synchronous detection, Hilbert-yellow detection) are studied. On this basis, a voltage flicker detection method based on polymeric empirical mode decomposition is proposed. Firstly, Hilbert transform is used to extract the envelope of voltage flicker signal. Then the noise in the envelope signal is eliminated by using the polymeric empirical mode decomposition method. Finally, the envelope signal after denoising is decomposed by the polymeric empirical mode decomposition, and the characteristic information of the amplitude modulation wave is extracted. The start and end times of voltage flicker can also be accurately calculated. The voltage flicker signal is simulated based on MATLAB, and the flicker characteristic information is extracted by the polymeric empirical mode detection method and the common detection method respectively. By analyzing and comparing the detection data, the experimental results show that the method can analyze the voltage flicker signals in time domain and frequency domain, and can accurately detect the time, amplitude and frequency of the sudden and non-stationary voltage flicker signals. The accuracy of flicker detection methods such as Hilbert-Huang transform method is high. A voltage flicker monitoring system based on virtual instrument technology is designed, including hardware and software. The hardware includes sensor, signal conditioning circuit, data acquisition card, computer, and the software design of the system is realized by using LabVIEW and MATLAB mixed programming method, including signal timing sampling program, de-noising program, amplitude modulation wave extraction program. Voltage parameter detection procedures, short-time flicker calculation procedures, data storage procedures. The voltage flicker measurement database is established by SQL Sever, the database is accessed by ADO technology in LabVIEW, the ActiveX module in LabVIEW and the SQL language are used to realize the storage of a lot of real-time data and the query of historical data. The simulated complex voltage flicker signal is analyzed by using the monitoring system, and the single stroboscopic signal with noise generated by the high-precision waveform generator is monitored. Finally, the real-time on-line monitoring of the field voltage is carried out in the motor drive laboratory of the smart grid research center. The experimental results show that the monitoring system is stable and reliable.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM933.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐浠鈺;李震梅;李海濤;馬瑞;邢冬梅;;基于希爾伯特-黃變換和EMD消噪的電壓閃變信號檢測[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2017年02期
2 王東樓;何怡剛;謝豐;張金安;;基于LabVIEW的電能質(zhì)量分析與遠(yuǎn)程監(jiān)測系統(tǒng)[J];電源技術(shù);2016年04期
3 臧狀;陳江波;李輝;林莘;;EEMD能量熵在配電變壓器繞組狀態(tài)監(jiān)測中的應(yīng)用[J];高壓電器;2015年11期
4 李俊秀;李明旭;;基于DSP電壓閃變在線檢測方法及仿真[J];工業(yè)儀表與自動化裝置;2015年05期
5 王輝春;李衛(wèi);謝照祥;;基于LabVIEW的電能監(jiān)測系統(tǒng)的設(shè)計研究[J];電子設(shè)計工程;2015年18期
6 邢峰華;張艷;張雪;胡艷美;;基于小波變換的電壓閃變檢測方法[J];遼寧工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2014年05期
7 張晗博;殷奕;殷奎喜;;基于小波變換的非平穩(wěn)信號分析與處理[J];南京師范大學(xué)學(xué)報(工程技術(shù)版);2014年01期
8 陳思源;;基于LabVIEW的信號測量與分析系統(tǒng)設(shè)計[J];儀表技術(shù);2013年11期
9 趙琳;楊利;楊乃琪;;基于虛擬儀器的電能質(zhì)量檢測系統(tǒng)設(shè)計[J];自動化與儀器儀表;2013年04期
10 朱寧輝;白曉民;董偉杰;;基于EEMD的諧波檢測方法[J];中國電機工程學(xué)報;2013年07期
相關(guān)碩士學(xué)位論文 前8條
1 安海清;電壓波動與閃變的檢測及分析[D];華北電力大學(xué);2015年
2 陳倩倩;基于巖土工程信號特征的小波基構(gòu)造及其算法與實現(xiàn)研究[D];長沙理工大學(xué);2013年
3 周希平;基于DSP的電壓閃變檢測系統(tǒng)設(shè)計[D];湖南大學(xué);2013年
4 屠金玲;電壓波動與閃變的檢測和抑制[D];山東大學(xué);2013年
5 王新梅;電壓波動與閃變的檢測和分析方法研究[D];湖南大學(xué);2013年
6 羅述俊;電網(wǎng)電壓閃變測量技術(shù)研究[D];西南交通大學(xué);2008年
7 王曉華;基于虛擬儀器的電壓閃變測量研究[D];華北電力大學(xué)(河北);2007年
8 郭上華;電壓波動與閃變微機檢測方法的研究[D];湖南大學(xué);2003年
,本文編號:1874980
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1874980.html