星載氦光泵磁矢量測(cè)量技術(shù)及快速DPSD算法研究
本文選題:衛(wèi)星磁測(cè) + 氦光泵磁力儀; 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:地磁場(chǎng)具有重要的應(yīng)用和研究?jī)r(jià)值,獲得地磁場(chǎng)數(shù)據(jù)從而建立地磁場(chǎng)模型是應(yīng)用地磁場(chǎng)的基礎(chǔ)。與地面磁測(cè)、海洋磁測(cè)和航空磁測(cè)相比,衛(wèi)星磁測(cè)具有測(cè)量范圍廣、測(cè)量數(shù)據(jù)均勻,單次全球測(cè)量周期短等許多優(yōu)點(diǎn),是獲取全球磁場(chǎng)數(shù)據(jù)更有效的方式。氦光泵磁力儀與磁通門(mén)磁力儀是主要的衛(wèi)星磁測(cè)儀器,磁通門(mén)磁力儀測(cè)量磁場(chǎng)的矢量信息,氦光泵磁力儀主要負(fù)責(zé)測(cè)量磁場(chǎng)的標(biāo)量信息并定期校準(zhǔn)磁通門(mén)磁力儀。最新的磁測(cè)衛(wèi)星Swarm上搭載的氦光泵磁力儀不僅實(shí)現(xiàn)了磁場(chǎng)的標(biāo)量測(cè)量還實(shí)現(xiàn)了對(duì)磁場(chǎng)的矢量測(cè)量,這是一個(gè)突破性的進(jìn)展,將降低新一代磁測(cè)衛(wèi)星設(shè)計(jì)的復(fù)雜度,進(jìn)一步提高衛(wèi)星測(cè)量磁場(chǎng)數(shù)據(jù)的準(zhǔn)確性,為多方面的研究工作帶來(lái)重要的改進(jìn)。本文以星載氦光泵磁力儀的最新技術(shù)進(jìn)展為參照,重點(diǎn)研究光泵磁力儀實(shí)現(xiàn)矢量測(cè)量技術(shù)的原理、仿真和實(shí)驗(yàn),并對(duì)影響光泵磁力儀矢量測(cè)量精度的因素進(jìn)行分析。矢量測(cè)量技術(shù)對(duì)光泵磁力儀的響應(yīng)速度和采樣率有很高的要求,為了進(jìn)一步提升光泵磁力儀的性能,提高矢量測(cè)量結(jié)果的精度,通過(guò)對(duì)影響響應(yīng)速度和采樣率的主要因素進(jìn)行分析,重點(diǎn)改進(jìn)了數(shù)字相敏檢測(cè)器(Digital Phase Sensitive Detector,DPSD)的實(shí)現(xiàn)算法。現(xiàn)將主要的研究?jī)?nèi)容歸納如下:(1)以光泵磁力儀實(shí)現(xiàn)的基本原理為基礎(chǔ),簡(jiǎn)要敘述檢測(cè)系統(tǒng)的實(shí)現(xiàn)方法。矢量測(cè)量技術(shù)以矢量運(yùn)算為理論基礎(chǔ),通過(guò)加入微小交變磁場(chǎng)改變總場(chǎng)信號(hào)的頻率成分,通過(guò)傅里葉變換進(jìn)行頻譜分析,然后計(jì)算地磁場(chǎng)的分量。(2)根據(jù)光泵磁力儀矢量測(cè)量技術(shù)的理論分析,首先進(jìn)行理論仿真計(jì)算,計(jì)算結(jié)果與理論分析一致,證明了理論分析的正確性。然后進(jìn)行物理仿真,在仿真亥姆霍茲線(xiàn)圈和背景磁場(chǎng)的基礎(chǔ)上,研究影響矢量精度的因素,為后期實(shí)驗(yàn)的設(shè)計(jì)提供指導(dǎo)。(3)運(yùn)用3D打印技術(shù)制作雙軸亥姆霍茲線(xiàn)圈,通過(guò)3D技術(shù)的使用,保證了制作線(xiàn)圈幾何尺寸的精度,提高了亥姆霍茲線(xiàn)圈產(chǎn)生磁場(chǎng)的精度,并且在屏蔽室進(jìn)一步對(duì)亥姆霍茲線(xiàn)圈的性能參數(shù)進(jìn)行確定。(4)在分析影響光泵磁力儀響應(yīng)速度的因素上,以數(shù)字相敏檢測(cè)器為突破口,重點(diǎn)分析了乘法器和低通濾波器算法的高效實(shí)現(xiàn)。對(duì)實(shí)現(xiàn)乘法器的CORDIC算法使用流水線(xiàn)結(jié)構(gòu)實(shí)現(xiàn),對(duì)實(shí)現(xiàn)CIC濾波器和FIR濾波器的算法進(jìn)行了重新設(shè)計(jì)。(5)通過(guò)實(shí)驗(yàn)測(cè)量,對(duì)矢量技術(shù)進(jìn)行驗(yàn)證。主要包括確定線(xiàn)圈的性能參數(shù),選擇穩(wěn)定的磁場(chǎng)環(huán)境進(jìn)行測(cè)試實(shí)驗(yàn)。最后經(jīng)過(guò)對(duì)結(jié)果的計(jì)算分析,雖然有0.9%左右誤差,但是仍然可以證明整個(gè)設(shè)計(jì)過(guò)程是合理有效的。
[Abstract]:Geomagnetic field has important application and research value. It is the foundation of geomagnetic application to obtain geomagnetic data and establish geomagnetic field model. Compared with ground magnetic measurement, marine magnetic measurement and aeromagnetic measurement, satellite magnetic measurement has many advantages, such as wide measurement range, uniform measurement data, short global measurement period and so on. It is a more effective way to obtain global magnetic field data. Helium optical pump magnetometer and fluxgate magnetometer are the main satellite magnetometer. The flux gate magnetometer measures the vector information of the magnetic field. The helium optical pump magnetometer is mainly responsible for measuring the scalar information of the magnetic field and calibrating the flux gate magnetometer regularly. The helium light pump magnetometer on the latest magnetic measurement satellite Swarm not only realizes the scalar measurement of magnetic field but also the vector measurement of magnetic field. This is a breakthrough and will reduce the complexity of the design of the new generation of magnetic measurement satellite. Further improving the accuracy of satellite magnetic field data will bring important improvement to many aspects of research work. In this paper, the principle, simulation and experiment of vector measurement of optical pump magnetometer are studied with reference to the latest technical progress of spaceborne helium optical pump magnetometer, and the factors that affect the accuracy of vector measurement of optical pump magnetometer are analyzed. In order to improve the performance of the optical pump magnetometer and improve the accuracy of the vector measurement, the vector measurement technology has high requirements for the response speed and sampling rate of the optical pump magnetometer. Based on the analysis of the main factors affecting the response speed and sampling rate, the algorithm of digital Phase Sensitive detector DPSD is improved. In this paper, the main research contents are summarized as follows: (1) based on the basic principle of optical pump magnetometer, the realization method of the detection system is briefly described. Based on the theory of vector operation, the vector measurement technology changes the frequency component of the total field signal by adding a small alternating magnetic field, and analyzes the frequency spectrum by Fourier transform. Then the component of geomagnetic field is calculated. (2) according to the theoretical analysis of the vector measurement technology of optical pump magnetometer, the theoretical simulation is carried out, and the calculated results are in agreement with the theoretical analysis, which proves the correctness of the theoretical analysis. Based on the simulation of Helmholtz coil and background magnetic field, the factors affecting vector accuracy are studied to provide guidance for the later experiment design. (3) using 3D printing technology to fabricate the biaxial Helmholtz coil. Through the use of 3D technology, the precision of the geometric dimension of the coil is guaranteed, and the accuracy of the magnetic field generated by the Helmholtz coil is improved. Furthermore, in the shielding room, the performance parameters of Helmholtz coil are determined. 4) in the analysis of the factors that affect the response speed of the optically pumped magnetometer, the digital phase sensitive detector is used as the breakthrough point. The efficient implementation of multiplier and low pass filter algorithm is analyzed. The CORDIC algorithm of multiplier is implemented with pipeline structure. The algorithm of realizing CIC filter and FIR filter is redesigned. It mainly includes determining the performance parameters of the coil and selecting a stable magnetic field environment for testing. Finally, through the calculation and analysis of the results, although there is about 0.9% error, it can still be proved that the whole design process is reasonable and effective.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM936
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈陽(yáng)儀器儀表研究所六室212課題組;;便攜式半導(dǎo)體光泵磁力儀[J];儀器儀表通訊;1974年01期
2 鄒鵬毅;羅深榮;顧建松;;兩型光泵磁力儀比對(duì)試驗(yàn)結(jié)果及分析[J];聲學(xué)與電子工程;2008年02期
3 黃成功;吳文福;余愷;劉鴻飛;;氦光泵磁力儀探頭的小型化設(shè)計(jì)[J];聲學(xué)與電子工程;2009年03期
4 劉鯤;李輝;;基于嵌入式技術(shù)的光泵磁力儀控制系統(tǒng)設(shè)計(jì)[J];安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
5 龍財(cái);董浩斌;譚超;;自激式銫光泵磁力儀吸收室恒溫控制系統(tǒng)[J];儀表技術(shù)與傳感器;2012年07期
6 張振宇;程德福;連明昌;周志堅(jiān);王君;;氦光泵磁力儀信號(hào)的分析及檢測(cè)[J];儀器儀表學(xué)報(bào);2011年12期
7 吳水根;譚勇華;周建平;;銫光泵磁力儀(G880)在海洋工程勘探方面的應(yīng)用[J];海洋科學(xué);2006年05期
8 張振宇;程德福;連明昌;周志堅(jiān);王君;;氦光泵磁力儀信號(hào)檢測(cè)控制回路的設(shè)計(jì)[J];電子測(cè)量與儀器學(xué)報(bào);2011年04期
9 劉浩軍;新一代航空氦光泵磁力儀(HC-2000型)通過(guò)部級(jí)鑒定驗(yàn)收[J];物探與化探;2003年02期
10 李輝;胡輝;張志通;;一種小型數(shù)字化光泵測(cè)磁系統(tǒng)的設(shè)計(jì)[J];電子器件;2012年06期
相關(guān)會(huì)議論文 前1條
1 王慶萼;;HC-90氦(H_e~4)光泵磁力儀[A];1994年中國(guó)地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年
相關(guān)重要報(bào)紙文章 前2條
1 ;我國(guó)研制出高靈敏度氦光泵磁力儀[N];中國(guó)冶金報(bào);2003年
2 何成師;新一代航磁儀研制成功[N];中國(guó)礦業(yè)報(bào);2003年
相關(guān)碩士學(xué)位論文 前10條
1 張斌;小型化銫光泵原子磁力儀研究[D];浙江大學(xué);2015年
2 張豪敏;銣原子激光光泵磁力儀的研究[D];浙江大學(xué);2016年
3 白園園;激光偏振態(tài)調(diào)制的Bell-Bloom光泵磁力儀及其梯度儀的研究[D];浙江大學(xué);2015年
4 胡睿帆;數(shù)字式氦光泵磁力儀的工程樣機(jī)設(shè)計(jì)[D];吉林大學(xué);2017年
5 陳軍;星載氦光泵磁矢量測(cè)量技術(shù)及快速DPSD算法研究[D];吉林大學(xué);2017年
6 張振宇;氦光泵磁力儀的信號(hào)檢測(cè)技術(shù)研究[D];吉林大學(xué);2009年
7 祁香兵;數(shù)字氦光泵磁力儀的設(shè)計(jì)與實(shí)現(xiàn)[D];浙江大學(xué);2007年
8 鄭彩平;光泵磁力儀共振信號(hào)角相關(guān)性的研究[D];哈爾濱工程大學(xué);2011年
9 柯超凡;光泵磁力儀的數(shù)字檢測(cè)系統(tǒng)設(shè)計(jì)[D];北京郵電大學(xué);2014年
10 楊月芳;數(shù)字化銣光泵磁力儀的設(shè)計(jì)[D];哈爾濱工程大學(xué);2012年
,本文編號(hào):1814362
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1814362.html