天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

基于改進(jìn)模糊聚類分析的電力系統(tǒng)不良數(shù)據(jù)辨識(shí)

發(fā)布時(shí)間:2018-04-16 10:22

  本文選題:電力系統(tǒng) + 不良數(shù)據(jù)檢測(cè)辨識(shí)。 參考:《東北石油大學(xué)》2017年碩士論文


【摘要】:當(dāng)前電力行業(yè)發(fā)展迅速,電力系統(tǒng)的規(guī)模也在不斷擴(kuò)大,隨著電力網(wǎng)絡(luò)的結(jié)構(gòu)和運(yùn)行模式更加復(fù)雜化,電網(wǎng)數(shù)據(jù)傳輸中產(chǎn)生錯(cuò)誤數(shù)據(jù)的概率越來(lái)越高,由于客觀原因的存在而產(chǎn)生的的錯(cuò)誤數(shù)據(jù)又被稱為不良數(shù)據(jù),由于不良數(shù)據(jù)無(wú)法正確顯示系統(tǒng)的運(yùn)行狀況,其存在將嚴(yán)重影響狀態(tài)估計(jì)的準(zhǔn)確性與可靠性,進(jìn)而對(duì)電力系統(tǒng)的安全穩(wěn)定運(yùn)行產(chǎn)生不利的影響。電力系統(tǒng)不良數(shù)據(jù)檢測(cè)辨識(shí)的目的在于去除量測(cè)數(shù)據(jù)中的不良數(shù)據(jù),為電力系統(tǒng)狀態(tài)估計(jì)提供準(zhǔn)確的數(shù)據(jù)。目前使用的不良數(shù)據(jù)檢測(cè)辨識(shí)的方法主要是基于量測(cè)數(shù)據(jù)殘差的方法,隨著電網(wǎng)結(jié)構(gòu)的復(fù)雜化,該方法檢測(cè)結(jié)果存在漏檢與誤檢的弊端日益凸顯。本文采用基于模糊聚類的方法實(shí)現(xiàn)將原始量測(cè)中的良性數(shù)據(jù)與不良數(shù)據(jù)分離,算例仿真結(jié)果顯示了該方法相比較傳統(tǒng)方法的優(yōu)越性。本文首先介紹了電力系統(tǒng)不良數(shù)據(jù)檢測(cè)辨識(shí)的知識(shí)背景和研究現(xiàn)狀,對(duì)比分析了當(dāng)前不良數(shù)據(jù)檢測(cè)辨識(shí)方法的優(yōu)缺點(diǎn)。針對(duì)不良數(shù)據(jù)間存在相關(guān)性而容易出現(xiàn)殘差污染和殘差淹沒(méi)的情況,傳統(tǒng)的殘差檢測(cè)方法表現(xiàn)不佳,于是本文提出使用EGSA-FCM算法實(shí)現(xiàn)不良數(shù)據(jù)的檢測(cè)辨識(shí),該方法以模糊聚類算法中的模糊C均值算法為基礎(chǔ),通過(guò)引入本文提出的增強(qiáng)型萬(wàn)有引力搜索算法實(shí)現(xiàn)對(duì)SCADA系統(tǒng)上傳的量測(cè)數(shù)據(jù)進(jìn)行前期搜索,該方法提高了計(jì)算效率和準(zhǔn)確性。最后將用于聚類有效性判斷的COS指標(biāo)應(yīng)用于對(duì)最佳聚類數(shù)目的判定,獲得最佳聚類結(jié)果,通過(guò)已知良性數(shù)據(jù)所在聚類,最終得到量測(cè)數(shù)據(jù)中良性數(shù)據(jù)與不良數(shù)據(jù)的分類。針對(duì)基于EGSA-FCM算法的不良數(shù)據(jù)檢測(cè)辨識(shí)方法,本文編制了檢測(cè)辨識(shí)程序。將該方法應(yīng)用IEEE14節(jié)點(diǎn)電力系統(tǒng)和某地區(qū)電網(wǎng)變區(qū)中,檢測(cè)辨識(shí)結(jié)果表明本文所提出的方法與傳統(tǒng)的檢測(cè)辨識(shí)方法相比有效避免了誤檢和漏檢的發(fā)生,檢測(cè)結(jié)果更加準(zhǔn)確。
[Abstract]:With the rapid development of power industry and the expansion of power system scale, with the complexity of power network structure and operation mode, the probability of generating wrong data in power network data transmission is higher and higher.The wrong data caused by the existence of objective reasons is also called bad data. Because the bad data can not correctly display the operating status of the system, its existence will seriously affect the accuracy and reliability of the state estimation.Furthermore, it has an adverse effect on the safe and stable operation of power system.The purpose of power system bad data detection and identification is to remove the bad data from the measurement data and to provide accurate data for power system state estimation.At present, the method of detection and identification of bad data is mainly based on the residual of measured data. With the complexity of power network structure, the defects of the detection results of this method are increasingly prominent.In this paper, the method based on fuzzy clustering is used to separate the benign data from the bad data in the original measurement. The simulation results show that this method is superior to the traditional method.This paper first introduces the knowledge background and research status of power system bad data detection and identification, and compares and analyzes the advantages and disadvantages of current bad data detection and identification methods.Because of the correlation between bad data and the possibility of residual pollution and residual inundation, the traditional residual detection method is not good, so this paper proposes to use EGSA-FCM algorithm to detect and identify bad data.This method is based on the fuzzy C-means algorithm of fuzzy clustering algorithm. By introducing the enhanced universal gravity search algorithm proposed in this paper, the pre-search of the measurement data uploaded by SCADA system is realized.This method improves the calculation efficiency and accuracy.Finally, the COS index, which is used to judge the clustering validity, is applied to the determination of the best clustering number, and the best clustering result is obtained. Finally, the classification of the benign data and the bad data in the measured data is obtained through the known clustering of the benign data.Aiming at the bad data detection and identification method based on EGSA-FCM algorithm, a detection and identification program is developed in this paper.The method is applied to the IEEE14 node power system and a region power system. The detection and identification results show that the method proposed in this paper is more effective than the traditional detection and identification methods to avoid the occurrence of false detection and miss detection, and the detection results are more accurate.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM732

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馬亞南;;電力系統(tǒng)異常數(shù)據(jù)的檢測(cè)辨識(shí)與修正探究[J];中國(guó)電業(yè)(技術(shù)版);2014年04期

2 李超順;周建中;肖劍;;基于改進(jìn)引力搜索算法的勵(lì)磁控制PID參數(shù)優(yōu)化[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年10期

3 李沛;段海濱;;基于改進(jìn)萬(wàn)有引力搜索算法的無(wú)人機(jī)航路規(guī)劃[J];中國(guó)科學(xué):技術(shù)科學(xué);2012年10期

4 劉勇;馬良;;非線性極大極小問(wèn)題的混沌萬(wàn)有引力搜索算法求解[J];計(jì)算機(jī)應(yīng)用研究;2012年01期

5 谷文祥;郭麗萍;殷明浩;;模糊c-均值算法和萬(wàn)有引力算法求解模糊聚類問(wèn)題[J];智能系統(tǒng)學(xué)報(bào);2011年06期

6 蔣德瓏;王克文;王祥東;;基于模糊等價(jià)矩陣聚類分析的不良數(shù)據(jù)辨識(shí)[J];電力系統(tǒng)保護(hù)與控制;2011年21期

7 唐俊;;電力系統(tǒng)狀態(tài)估計(jì)研究綜述[J];中國(guó)新技術(shù)新產(chǎn)品;2011年20期

8 李子豐;;用物體與微粒子的動(dòng)量交換解釋萬(wàn)有引力定律[J];中國(guó)西部科技;2011年28期

9 申元霞;王國(guó)胤;曾傳華;;PSO模型種群多樣性與學(xué)習(xí)參數(shù)的關(guān)系研究[J];電子學(xué)報(bào);2011年06期

10 金林鵬;李均利;魏平;陳剛;;用于函數(shù)優(yōu)化的最大引力優(yōu)化算法[J];模式識(shí)別與人工智能;2010年05期

相關(guān)碩士學(xué)位論文 前3條

1 周小寶;電力系統(tǒng)狀態(tài)估計(jì)不良數(shù)據(jù)檢測(cè)與辨識(shí)方法研究與應(yīng)用[D];湖南大學(xué);2013年

2 鄒賢;基于GSA的昆明電網(wǎng)不良數(shù)據(jù)辨識(shí)與修正研究[D];華北電力大學(xué);2012年

3 蔣德瓏;采用模糊聚類方法進(jìn)行電力系統(tǒng)不良數(shù)據(jù)辨識(shí)[D];鄭州大學(xué);2011年

,

本文編號(hào):1758483

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1758483.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0fac4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com