復(fù)合轉(zhuǎn)子異步起動(dòng)永磁同步電動(dòng)機(jī)永磁體退磁研究
本文選題:復(fù)合轉(zhuǎn)子異步起動(dòng)永磁同步電動(dòng)機(jī) 切入點(diǎn):退磁 出處:《山東大學(xué)》2017年碩士論文
【摘要】:復(fù)合轉(zhuǎn)子異步起動(dòng)永磁同步電動(dòng)機(jī)兼有實(shí)心轉(zhuǎn)子永磁同步電動(dòng)機(jī)和籠型轉(zhuǎn)子永磁同步電動(dòng)機(jī)的優(yōu)點(diǎn),既有良好的起動(dòng)性能,又有較高功率因數(shù)和效率。但作為永磁電機(jī)的一種,永磁材料的退磁問(wèn)題也制約著它的應(yīng)用,因此有必要研究其永磁體在各種工況下的退磁情況。本文以一臺(tái)355kW、10kV、6極復(fù)合轉(zhuǎn)子異步起動(dòng)永磁同步電動(dòng)機(jī)為例,建立了計(jì)及渦流、飽和等因素的有限元模型,分析電機(jī)在起動(dòng)過(guò)程中、三相突然短路及突加負(fù)載時(shí)的退磁規(guī)律及原因,并分析了轉(zhuǎn)子結(jié)構(gòu)對(duì)起動(dòng)過(guò)程中退磁的影響。簡(jiǎn)要介紹復(fù)合轉(zhuǎn)子異步起動(dòng)永磁同步電動(dòng)機(jī)的基本結(jié)構(gòu)與工作原理,并對(duì)此電機(jī)的磁動(dòng)勢(shì)進(jìn)行求解,同時(shí)介紹了一種永磁體工作點(diǎn)的判斷方法,定義了最小工作點(diǎn)、平均工作點(diǎn)、最大去磁工作點(diǎn)及最大去磁平均工作點(diǎn)等相關(guān)概念。對(duì)電機(jī)起動(dòng)過(guò)程的分析,綜合考慮轉(zhuǎn)子初始位置、初始負(fù)載轉(zhuǎn)矩與轉(zhuǎn)動(dòng)慣量的影響,發(fā)現(xiàn)永磁體的最小工作點(diǎn)與定轉(zhuǎn)子合成磁動(dòng)勢(shì)位置有關(guān)。當(dāng)永磁體磁場(chǎng)與定轉(zhuǎn)子合成磁場(chǎng)的夾角為110°、240°左右時(shí),永磁體局部退磁風(fēng)險(xiǎn)大;最大去磁工作點(diǎn)出現(xiàn)在低速,而非普通起動(dòng)永磁同步電動(dòng)機(jī)那樣出現(xiàn)在接近同步速;永磁體靠近氣隙側(cè)的邊角處局部退磁最嚴(yán)重。合成磁動(dòng)勢(shì)直軸分量能反映永磁體退磁磁場(chǎng)的強(qiáng)弱,負(fù)載越大,永磁體的最大去磁平均工作點(diǎn)越低,其對(duì)應(yīng)的轉(zhuǎn)速越接近同步速,整體出現(xiàn)退磁的概率越大。分析轉(zhuǎn)子槽楔的材質(zhì)、尺寸以及有無(wú)導(dǎo)條對(duì)永磁體工作點(diǎn)的影響,發(fā)現(xiàn)銅槽楔及銅導(dǎo)條的存在對(duì)永磁體起動(dòng)了屏蔽保護(hù)作用,沒(méi)有銅槽楔和銅導(dǎo)條時(shí),永磁體的去磁點(diǎn)值減小,使可能局部退磁的時(shí)刻更加靠前。并且銅槽楔的尺寸越小,去磁點(diǎn)值越高,有利于降低永磁體退磁的風(fēng)險(xiǎn),而銅導(dǎo)條還能提高電機(jī)的起動(dòng)性能,減小退磁發(fā)生的概率。分析電機(jī)三相突然短路發(fā)現(xiàn),永磁體的最小工作點(diǎn)與電樞磁動(dòng)勢(shì)軸直軸分量有關(guān),平均工作點(diǎn)受合成磁動(dòng)勢(shì)直軸分量的影響。同時(shí)分析了短路時(shí)刻、初始負(fù)載轉(zhuǎn)矩及初始轉(zhuǎn)動(dòng)慣量對(duì)永磁體工作點(diǎn)的影響,并研究了三相突然短路時(shí)永磁體去磁點(diǎn)的規(guī)律。經(jīng)分析發(fā)現(xiàn),三相突然短路時(shí),但是不論是局部退磁還是整體退磁,退磁情況遠(yuǎn)沒(méi)有起動(dòng)過(guò)程中的嚴(yán)重。分析電機(jī)突加負(fù)載發(fā)現(xiàn),突加負(fù)載造成電機(jī)失步時(shí),永磁體工作點(diǎn)變化較大,易發(fā)生退磁。并分析了突加負(fù)載大小、突加負(fù)載時(shí)刻、初始負(fù)載轉(zhuǎn)矩及初始轉(zhuǎn)動(dòng)慣量對(duì)永磁體工作點(diǎn)的影響,并研究了失步時(shí)永磁體去磁點(diǎn)的規(guī)律。分析發(fā)現(xiàn),不論是局部退磁還是整體退磁,失步時(shí)的退磁情況遠(yuǎn)沒(méi)有起動(dòng)過(guò)程中的嚴(yán)重。
[Abstract]:The composite rotor asynchronous starting permanent magnet synchronous motor has the advantages of both solid rotor permanent magnet synchronous motor and cage rotor permanent magnet synchronous motor. It has good starting performance, high power factor and high efficiency. The demagnetization of permanent magnet material also restricts its application, so it is necessary to study the demagnetization of permanent magnet under various working conditions. Based on the finite element model of saturation and other factors, the demagnetization law and reason of three-phase sudden short circuit and sudden load are analyzed. The influence of rotor structure on demagnetization during starting is analyzed. The basic structure and working principle of permanent magnet synchronous motor (PMSM) with complex rotor asynchronous starting are briefly introduced, and the magnetodynamic potential of the motor is solved. At the same time, a method to judge the working point of permanent magnet is introduced, and the concepts of minimum working point, average working point, maximum demagnetization point and maximum demagnetizing average working point are defined, and the starting process of the motor is analyzed. Considering the influence of rotor initial position, initial load torque and moment of inertia, it is found that the minimum working point of permanent magnet is related to the position of stator / rotor synthetic magnetic force. When the angle between permanent magnet and stator / rotor magnetic field is about 110 擄or 240 擄, The local demagnetization risk of permanent magnet is high, the maximum demagnetization working point appears at low speed, but not in close to synchronous speed as the common starting permanent magnet synchronous motor. The local demagnetization is the most serious at the edge corner of the permanent magnet near the air gap side. The direct axis component of the synthetic magnetoEMF can reflect the demagnetization magnetic field of the permanent magnet. The larger the load, the lower the maximum demagnetization average working point of the permanent magnet, and the closer the corresponding rotational speed is to the synchronous speed. The larger the probability of demagnetization, the greater the probability of demagnetization. By analyzing the influence of the material and size of rotor wedge and the influence of guide bar on the working point of permanent magnet, it is found that the existence of copper slot wedge and copper guide bar can shield and protect the permanent magnet. When there is no copper wedge and copper guide bar, the demagnetization point value of the permanent magnet decreases, which makes the possible local demagnetization time more forward. And the smaller the size of the copper slot wedge, the higher the demagnetization point value, which is conducive to reducing the risk of demagnetization of the permanent magnet. The copper guide bar can also improve the starting performance of the motor and reduce the probability of demagnetization. By analyzing the three phase short circuit of the motor, it is found that the minimum operating point of the permanent magnet is related to the axial component of the axis of the armature magnetic motive force. The average operating point is affected by the direct axis component of the synthetic magnetic EMF, and the influence of the short-circuit moment, the initial load torque and the initial moment of inertia on the working point of the permanent magnet is analyzed. The law of demagnetization point of permanent magnet with three phase short circuit is studied. It is found that the demagnetization is not only local demagnetization but also global demagnetization when three phase short circuit occurs. The demagnetization situation is far less serious than in the starting process. It is found by analyzing the sudden adding load of the motor that the working point of the permanent magnet changes greatly and it is easy to demagnetize when the motor is out of step caused by the sudden addition of the load, and the size of the sudden addition load and the time of the sudden loading are analyzed. The influence of the initial load torque and the initial moment of inertia on the working point of the permanent magnet is studied. The law of demagnetizing point of the permanent magnet when it is out of step is studied. It is found that both local demagnetization and global demagnetization are obtained. The demagnetization situation is far less serious than that in the starting process.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TM341
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 秋實(shí);河北工大首次研制成功環(huán)形永磁體 專家認(rèn)為該成果系國(guó)內(nèi)外首創(chuàng)達(dá)到國(guó)際領(lǐng)先水平[J];河北工業(yè)大學(xué)學(xué)報(bào);2000年05期
2 啟明;超導(dǎo)永磁體[J];金屬功能材料;2000年03期
3 ;永磁體及其相關(guān)的研究發(fā)展史[J];金屬功能材料;2001年02期
4 啟明;永磁體的發(fā)展[J];金屬功能材料;2002年05期
5 劉孟陶,張新元;醫(yī)用永磁體實(shí)行標(biāo)準(zhǔn)化生產(chǎn)的雛議[J];生物磁學(xué);2002年03期
6 鐘培全;稀土元素-鐵-硼永磁體及其制備方法[J];稀有金屬快報(bào);2003年02期
7 齊鳳春;;永磁體在醫(yī)療上的應(yīng)用[J];儀表材料;1975年01期
8 齊風(fēng)春;;永磁體標(biāo)準(zhǔn)化展望[J];儀表材料;1975年06期
9 齊鳳春;永磁體穩(wěn)定性問(wèn)題續(xù)談[J];電測(cè)與儀表;1977年02期
10 ;關(guān)于釤鐠鈷永磁體的穩(wěn)定性、使用價(jià)值和大規(guī)模生產(chǎn)[J];磁性材料及器件;1977年01期
相關(guān)會(huì)議論文 前10條
1 翟福強(qiáng);孫愛(ài)芝;關(guān)媛媛;陳云志;;開(kāi)放磁路下永磁體外磁場(chǎng)磁性能的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 李增峰;談萍;張晗亮;湯慧萍;劉海燕;黃瑜;;粘結(jié)永磁體發(fā)展現(xiàn)狀[A];2006年全國(guó)功能材料學(xué)術(shù)年會(huì)專輯[C];2006年
3 徐克仁;李蔚;周慧穎;康玉紅;;永磁體的開(kāi)路剩磁及其臨床意義[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)醫(yī)學(xué)物理分會(huì)第十次學(xué)術(shù)年會(huì)、中華醫(yī)學(xué)會(huì)醫(yī)學(xué)工程學(xué)分會(huì)第一次醫(yī)療設(shè)備科學(xué)管理研討會(huì)論文集[C];1998年
4 勵(lì)軻;陳立群;;矩形永磁體磁場(chǎng)中壓電懸臂梁的動(dòng)力學(xué)建模[A];第十四屆全國(guó)非線性振動(dòng)暨第十一屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集與會(huì)議議程[C];2013年
5 武海澄;楊仕友;李t,
本文編號(hào):1692003
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1692003.html