天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

智能電網(wǎng)超短期負(fù)荷預(yù)測(cè)方法研究

發(fā)布時(shí)間:2018-03-21 05:57

  本文選題:智能電網(wǎng) 切入點(diǎn):超短期負(fù)荷預(yù)測(cè) 出處:《華北電力大學(xué)(北京)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著智能電網(wǎng)的發(fā)展,越來越多的新能源接入其中,如太陽能、風(fēng)能等,形成分布式電網(wǎng)模式。然而,這些新能源的發(fā)電量易受光照、風(fēng)速等自然條件的影響,尤其隨著新能源接入量的增加,其本身的波動(dòng)性對(duì)智能電網(wǎng)的穩(wěn)定性帶來很大影響。在電網(wǎng)穩(wěn)定性狀態(tài)評(píng)估和電網(wǎng)實(shí)時(shí)動(dòng)態(tài)無功電壓優(yōu)化控制等方面,超短期負(fù)荷預(yù)測(cè)具有重要的參考意義。超短期負(fù)荷預(yù)測(cè)具有預(yù)測(cè)時(shí)間短、實(shí)時(shí)性要求高等特點(diǎn),目前正處于研究階段。智能電網(wǎng)中大量的時(shí)序數(shù)據(jù)對(duì)于超短期負(fù)荷預(yù)測(cè)具有重要的參考價(jià)值,如何有效地利用智能電網(wǎng)中的時(shí)序數(shù)據(jù),充分挖掘其中潛在信息的關(guān)聯(lián)性進(jìn)行超短期負(fù)荷預(yù)測(cè),成為智能電網(wǎng)系統(tǒng)的一個(gè)熱門研究方向。本文針對(duì)目前超短期負(fù)荷預(yù)測(cè)算法存在的穩(wěn)定性差和忽略用戶行為相似性等問題,提出了基于虛擬用戶模型和預(yù)測(cè)區(qū)間的超短期預(yù)測(cè)模型;然后結(jié)合電力用戶數(shù)據(jù)的數(shù)據(jù)流特點(diǎn),提出了基于數(shù)據(jù)流聚類的超短期負(fù)荷預(yù)測(cè)方法,提高了預(yù)測(cè)速度。本文主要的研究有如下幾個(gè)方面。首先,對(duì)現(xiàn)有的超短期負(fù)荷預(yù)測(cè)算法進(jìn)行了綜述,分析了現(xiàn)有預(yù)測(cè)算法的缺點(diǎn)。其次,針對(duì)現(xiàn)有的預(yù)測(cè)算法中未考慮到用戶用電行為的相似性的問題,通過分析用戶負(fù)荷曲線的特點(diǎn),提出虛擬用戶模型;再次,考慮到用戶用電行為的隨機(jī)性特點(diǎn),引入預(yù)測(cè)區(qū)間以提高預(yù)測(cè)算法的穩(wěn)定性,結(jié)合虛擬用戶模型,提出了基于虛擬用戶模型和預(yù)測(cè)區(qū)間的超短期預(yù)測(cè)模型;然后,根據(jù)智能電網(wǎng)中用戶負(fù)荷數(shù)據(jù)的時(shí)序特性,采用數(shù)據(jù)流聚類技術(shù)對(duì)虛擬用戶模型的超短期負(fù)荷預(yù)測(cè)算法進(jìn)行改進(jìn),提高了算法的預(yù)測(cè)速度;最后,通過實(shí)驗(yàn)驗(yàn)證,本文提出的基于虛擬用戶模型的超短期負(fù)荷預(yù)測(cè)算法的準(zhǔn)確率要優(yōu)于對(duì)比試驗(yàn)中的其它算法,并且引入數(shù)據(jù)流聚類分析技術(shù)后在預(yù)測(cè)精度可接受范圍內(nèi),預(yù)測(cè)速度也得到了顯著提升。
[Abstract]:With the development of smart grid, more and more new energy sources are connected to it, such as solar energy, wind energy and so on. However, the generation of these new energy sources is easily affected by natural conditions such as light, wind speed, etc. In particular, with the increase of new energy access, its own volatility has a great impact on the stability of smart grid. In the aspects of power grid stability evaluation and real-time dynamic reactive power and voltage optimization control, etc. Ultra-short-term load forecasting has important reference significance. Ultra-short-term load forecasting has the characteristics of short forecasting time, high real-time requirement and so on. At present, a lot of time series data in smart grid have important reference value for ultra-short-term load forecasting, how to utilize the time series data in smart grid effectively. Fully mining the correlation of potential information for ultra-short-term load forecasting, It has become a hot research direction in smart grid system. This paper aims at the problems of poor stability and neglecting the similarity of user behavior in the current ultra-short-term load forecasting algorithm. An ultra-short-term forecasting model based on virtual user model and prediction interval is proposed, and then a method of ultra-short-term load forecasting based on data stream clustering is proposed, which is based on the characteristics of data flow of power user data. The main research in this paper is as follows: firstly, the existing ultra-short-term load forecasting algorithms are reviewed, and the shortcomings of the existing forecasting algorithms are analyzed. In view of the problem that the existing prediction algorithms do not consider the similarity of the user's power consumption behavior, by analyzing the characteristics of the user load curve, a virtual user model is proposed. Thirdly, considering the randomness of the user's power consumption behavior, The prediction interval is introduced to improve the stability of the prediction algorithm. Combined with the virtual user model, the ultra-short-term forecasting model based on the virtual user model and the prediction interval is proposed. Then, according to the time series characteristics of the user load data in the smart grid, The data stream clustering technique is used to improve the ultra-short-term load forecasting algorithm of the virtual user model, which improves the forecasting speed of the algorithm. The accuracy of the proposed algorithm based on virtual user model is better than that of other algorithms in the contrast experiment, and the prediction accuracy is acceptable after the introduction of data stream clustering analysis technology. The predicted speed has also improved significantly.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM76;TM715

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 祖向榮;田敏;白焰;;基于模糊聚類與函數(shù)小波核回歸的短期負(fù)荷預(yù)測(cè)方法[J];電力自動(dòng)化設(shè)備;2016年10期

2 張超;任國(guó)臣;牛藝橋;蔣蕾;賈書文;;基于時(shí)間序列法超短期負(fù)荷預(yù)測(cè)改進(jìn)方法的研究[J];遼寧工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年05期

3 于春雷;王皓;;淺談負(fù)荷預(yù)測(cè)數(shù)據(jù)預(yù)處理方法[J];黑龍江科技信息;2015年27期

4 陶莉;朱小光;;數(shù)據(jù)預(yù)處理對(duì)電力負(fù)荷預(yù)測(cè)精度的影響[J];華電技術(shù);2015年09期

5 唐聰嵐;盧繼平;謝應(yīng)昭;張露;;基于改進(jìn)數(shù)據(jù)流在線分割的超短期負(fù)荷預(yù)測(cè)[J];電網(wǎng)技術(shù);2014年07期

6 楊濤;劉文杰;丁寧;;基于梯度下降算法的神經(jīng)網(wǎng)絡(luò)模型研究[J];網(wǎng)絡(luò)安全技術(shù)與應(yīng)用;2013年04期

7 錢虹;阮大兵;黃正潤(rùn);;電力系統(tǒng)超短期負(fù)荷預(yù)測(cè)算法及應(yīng)用[J];上海電力學(xué)院學(xué)報(bào);2013年01期

8 劉莉;王剛;翟登輝;;k-means聚類算法在負(fù)荷曲線分類中的應(yīng)用[J];電力系統(tǒng)保護(hù)與控制;2011年23期

9 張怡;張鋒;;電力系統(tǒng)超短期負(fù)荷預(yù)測(cè)技術(shù)的應(yīng)用與發(fā)展[J];浙江電力;2010年02期

10 衛(wèi)志農(nóng);謝鐵明;孫國(guó)強(qiáng);;基于超短期負(fù)荷預(yù)測(cè)和混合量測(cè)的線性動(dòng)態(tài)狀態(tài)估計(jì)[J];中國(guó)電機(jī)工程學(xué)報(bào);2010年01期

相關(guān)博士學(xué)位論文 前2條

1 孔英會(huì);數(shù)據(jù)流技術(shù)及其在電力信息處理中的應(yīng)用研究[D];華北電力大學(xué)(河北);2009年

2 方仍存;電力系統(tǒng)負(fù)荷區(qū)間預(yù)測(cè)[D];華中科技大學(xué);2008年

相關(guān)碩士學(xué)位論文 前1條

1 陽建坤;智能電網(wǎng)復(fù)雜事件處理技術(shù)應(yīng)用研究[D];華北電力大學(xué);2015年

,

本文編號(hào):1642550

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1642550.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c933d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com