鎳基復(fù)合納米材料的合成及其在超級(jí)電容器中的應(yīng)用
本文關(guān)鍵詞: 超級(jí)電容器 水熱法 復(fù)合材料 錳酸鎳 鈷鎳雙氫氧化物 鎳鈷氫氧化物與鉬氧化物 出處:《西南大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:超級(jí)電容器是介于電池和傳統(tǒng)電容器之間的一種高效、環(huán)保、新型的電化學(xué)能量?jī)?chǔ)存元件,擁有高功率密度、長(zhǎng)使用壽命和大電流快速充電等優(yōu)勢(shì),在很多領(lǐng)域具有無與倫比的發(fā)展空間和實(shí)用價(jià)值。在超級(jí)電容器電極材料研究中,我們發(fā)現(xiàn)廉價(jià)金屬氧化物/氫氧化物由于優(yōu)秀的電化學(xué)性質(zhì)、原料豐富便宜、環(huán)保等,已成為近年來科技工作者的研究熱點(diǎn)。本論文以鎳、鈷、鉬以及錳為原料制備合成了二元或三元金屬氧化物復(fù)合材料,以解決金屬氧化物電極材料的低電導(dǎo)率、循環(huán)穩(wěn)定性差等問題。且比較系統(tǒng)的探索了合成條件、材料復(fù)合對(duì)電極材料的形貌、結(jié)構(gòu)和電學(xué)性能的影響。研宄成果如下:(1)通過水熱法,以硝酸鎳和氯化錳為原料,在碳布基底上生長(zhǎng)了具有高比電容的二維納米片結(jié)構(gòu)的NiMnO3復(fù)合材料。利用XRD和SAED觀察并研究了樣品的物相組成;利用SEM和TEM系統(tǒng)的研究了材料的形貌和結(jié)構(gòu);用CHI660e對(duì)其電學(xué)性質(zhì)進(jìn)行了大量的測(cè)試。結(jié)果顯示,NiMnO3擁有比較大的容量、大電流倍率特性。其中,Ni/Mn摩爾比3:3且在6h水熱條件下合成的NiMnO3復(fù)合材料擁有較高的比容值,最高能有2330F/g(1A/g),20A/g電流密度下的比電容為1640F/g,比電容的保持率為70.3%,但NiMnO3材料連續(xù)充放電1000次后剩余比容值是最初比容值的67.2%,說明NiMnO3具有較低的循環(huán)性能。(2)通過水熱法,以硝酸鈷、硝酸鎳為原料,在碳布基底上生長(zhǎng)了二維納米片結(jié)構(gòu)的Co-Ni層狀雙氫氧化物(LDH)復(fù)合材料。利用XRD和SAED觀察并研究了樣品的物相組成;利用SEM和TEM系統(tǒng)的研究了材料的形貌和結(jié)構(gòu);用CHI660e對(duì)其電學(xué)性質(zhì)進(jìn)行了大量的測(cè)試。按照測(cè)試結(jié)果能夠得出,Co-Ni LDH電極材料擁有較大的電容、大電流倍率性能。其中,Co/Ni摩爾比1:3且在6h水熱條件下合成的Co-Ni LDH擁有較高的比容量,高達(dá)2766F/g(1A/g),20A/g電流密度下的比電容為2360F/g,比電容的保持率為85.3%,并且連續(xù)充放電1000次后剩余比容值是最初比容值的77.2%;谝陨蠈(shí)驗(yàn)結(jié)果,鈷、鎳價(jià)格便宜、合成方法簡(jiǎn)單以及高的比電容等優(yōu)勢(shì),我們認(rèn)為Co-Ni LDH復(fù)合材料具有很高的應(yīng)用價(jià)值以及具有很好的發(fā)展空間。(3)通過水熱法,以硝酸鈷、硝酸鎳和鉬酸鈉為原料,在碳布基底上生長(zhǎng)了二維納米片結(jié)構(gòu)的鎳鈷氫氧化物與鉬氧化物復(fù)合材料。利用XRD和SAED觀察并研究了樣品的物相組成;利用SEM和TEM系統(tǒng)的研究了材料的形貌和結(jié)構(gòu);用CHI660e對(duì)其電學(xué)性質(zhì)進(jìn)行了大量的測(cè)試。結(jié)果顯示,鎳鈷氫氧化物與鉬氧化物復(fù)合材料的比量容較大,擁有大電流倍率性能和優(yōu)秀的穩(wěn)定性能。鎳鈷氫氧化物與鉬氧化物復(fù)合材料的比容量有2562F/g(1A/g),10A/g電流密度下的比電容為2260F/g,比電容的保持率為88%,且鎳鈷氫氧化物與鉬氧化物復(fù)合材料連續(xù)充放電1000次后其比電容衰減僅為9%,從而表明鎳鈷氫氧化物與鉬氧化物是最有發(fā)展?jié)摿Φ碾姌O材料。
[Abstract]:Supercapacitor is a kind of high efficiency, environmental protection, new electrochemical energy storage element between battery and traditional capacitor. It has the advantages of high power density, long service life and fast charging with high current. In the study of electrode materials for supercapacitors, we have found that cheap metal oxides / hydroxides are cheap because of their excellent electrochemical properties, rich in raw materials and cheap, environmentally friendly, etc. In this paper, binary or ternary metal oxide composites were prepared from nickel, cobalt, molybdenum and manganese to solve the low conductivity of metal oxide electrode materials. The effects of synthesis conditions and composite materials on the morphology, structure and electrical properties of electrode materials have been systematically explored. The results are as follows: 1) by hydrothermal method, nickel nitrate and manganese chloride are used as raw materials. NiMnO3 composites with high specific capacitance were grown on the carbon cloth substrate. The phase compositions of the samples were observed and studied by XRD and SAED, and the morphology and structure of the samples were studied by SEM and TEM systems. A large number of electrical properties have been tested by CHI660e. The results show that NiMnO3 has a relatively large capacity and high current rate. The NiMnO3 composites synthesized at the molar ratio of 3: 3 and 6 h hydrothermal condition have a higher specific volume value. The maximum specific capacitance of 2330F / g / g 20A / g current density is 1640Fr / g, and the specific capacitance retention rate is 70.30.But the residual specific capacitance of NiMnO3 material is 67.2% of the initial specific volume value after 1, 000 continuous charging and discharging, indicating that NiMnO3 has lower cycling performance. 2) by hydrothermal method, cobalt nitrate, Two-dimensional nanostructured Co-Ni layered double hydroxide (Co-Ni) composite was grown on carbon cloth substrate with nickel nitrate as raw material. The phase composition of the sample was observed and studied by XRD and SAED, and the morphology and structure of the material were studied by SEM and TEM system. A large number of electrical properties have been tested by CHI660e. According to the test results, it can be concluded that the Co-Ni LDH electrode material has a large capacitance. The Co-Ni LDH synthesized at 6 h hydrothermal condition has high specific capacity, and the molar ratio of Co / Ni is 1: 3, and the ratio of Co / Ni is 1: 3, and the LDH synthesized at 6 h hydrothermal condition has a high specific capacity. The specific capacitance is 2360 F / g at current density up to 2766 F / g / g, the specific capacitance retention is 85.3%, and the residual specific capacitance is 77.2% of the initial specific volume value after 1000 continuous charging and discharging. Based on the above experimental results, cobalt and nickel are cheap. The synthesis method is simple and has the advantages of high specific capacitance. We think that Co-Ni LDH composites have high application value and good development space. Through hydrothermal method, cobalt nitrate, nickel nitrate and sodium molybdate are used as raw materials. Ni-Co hydroxide and molybdenum oxide composites with two-dimensional nanostructures were grown on the carbon cloth substrate. The phase composition of the samples was observed and studied by XRD and SAED, and the morphology and structure of the samples were studied by SEM and TEM systems. A large number of electrical properties were tested by CHI660e. The results showed that the specific capacity of Ni-Co hydroxide / molybdenum oxide composite was larger. The specific capacity of Ni-Co hydroxide / molybdenum oxide composite is 2562F / g / g, the specific capacitance is 2260Fr / g, the retention of specific capacitance is 88F / g, and the nickel cobalt hydroxide and molybdenum oxide have a specific capacity of 2562F / g / g / g current density, and the specific capacity of Ni-Co hydroxide / molybdenum oxide composite is 88%, and the specific capacity of Ni-Co hydroxide / molybdenum oxide composite is 2562F / g / g. The specific capacitance attenuation of the composite is only 9 after 1000 continuous charging and discharging, which indicates that nickel cobalt hydroxide and molybdenum oxide are the most promising electrode materials.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB33;TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙雪;邱平達(dá);姜海靜;金振興;蔡克迪;;超級(jí)電容器電極材料研究最新進(jìn)展[J];電子元件與材料;2015年01期
2 Fen Ran;Huili Fan;Lingren Wang;Lei Zhao;Yongtao Tan;Xuanxuan Zhang;Lingbin Kong;Long Kang;;A bird nest-like manganese dioxide and its application as electrode in supercapacitors[J];Journal of Energy Chemistry;2013年06期
3 嚴(yán)琳;孔惠;李在均;;3D石墨烯/鎳鋁層狀雙金屬氫氧化物的制備及超級(jí)電容性能[J];化學(xué)學(xué)報(bào);2013年05期
4 牛玉蓮;金鑫;鄭佳;李在均;顧志國(guó);嚴(yán)濤;方銀軍;;石墨烯/鈷鎳雙金屬氫氧化物復(fù)合材料的制備及電化學(xué)性能研究[J];無機(jī)化學(xué)學(xué)報(bào);2012年09期
5 蔣健偉;張校剛;蘇凌浩;章羅江;張方;;層板金屬離子不同的鈷基雙氫氧化物制備及其電化學(xué)性能[J];無機(jī)化學(xué)學(xué)報(bào);2010年09期
6 涂亮亮;賈春陽(yáng);;導(dǎo)電聚合物超級(jí)電容器電極材料[J];化學(xué)進(jìn)展;2010年08期
7 張杜鵲;歐陽(yáng)海;胡歡;;超級(jí)電容器在電動(dòng)汽車上的應(yīng)用[J];汽車工程師;2009年06期
8 龐旭;馬正青;左列;曾蘇民;;超級(jí)電容器金屬氧化物電極材料研究進(jìn)展[J];表面技術(shù);2009年03期
9 倪哲明;胥倩;潘國(guó)祥;毛江洪;;層狀雙金屬氫氧化物微觀結(jié)構(gòu)與性質(zhì)的理論研究進(jìn)展[J];物理化學(xué)學(xué)報(bào);2009年04期
10 陳英放;李媛媛;鄧梅根;;超級(jí)電容器的原理及應(yīng)用[J];電子元件與材料;2008年04期
相關(guān)博士學(xué)位論文 前3條
1 劉卯成;雙金屬氧化物及其復(fù)合材料的贗電容行為研究[D];蘭州理工大學(xué);2013年
2 張金輝;超級(jí)電容器復(fù)合電極材料制備及電化學(xué)性能研究[D];燕山大學(xué);2013年
3 郎俊偉;用于超級(jí)電容器的金屬氧化物及其復(fù)合電極材料的制備與性能研究[D];蘭州理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 莫麗萍;超級(jí)電容器電極材料——鈷、鎳氫氧化物的制備及其電化學(xué)性能[D];西北師范大學(xué);2008年
,本文編號(hào):1542152
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1542152.html