具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)機(jī)組調(diào)峰特性分析
本文關(guān)鍵詞: 熱電聯(lián)產(chǎn) 熱泵 調(diào)峰 吸收式供熱 出處:《山東大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:利用吸收式熱泵回收熱電排汽余熱用于供熱,具有節(jié)能、環(huán)保、經(jīng)濟(jì)等效益突出的特點(diǎn),因此被廣泛應(yīng)用于熱電聯(lián)產(chǎn)行業(yè),提高了能源利用效率,擴(kuò)大了機(jī)組的供熱能力。經(jīng)濟(jì)的發(fā)展轉(zhuǎn)變了我國(guó)用電結(jié)構(gòu)和用電需求,電力系統(tǒng)呈現(xiàn)出峰谷差日益擴(kuò)大,調(diào)峰需求顯著增多的特點(diǎn)。熱電聯(lián)產(chǎn)機(jī)組參與調(diào)峰,是減小電網(wǎng)峰谷差和解決風(fēng)電消納的重要途徑,具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)機(jī)組調(diào)峰已經(jīng)成為當(dāng)前亟需解決的問(wèn)題。本文以已投運(yùn)的具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)機(jī)組為研究對(duì)象,旨在獲取該類型機(jī)組的調(diào)峰能力,以Ebsilon軟件構(gòu)建熱力學(xué)模型仿真機(jī)組的運(yùn)行工況,探究熱電調(diào)峰對(duì)機(jī)組供熱性能的影響,確定機(jī)組供熱期間最大調(diào)峰能力的計(jì)算原則,繪制具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)機(jī)組的調(diào)峰運(yùn)行工況圖,擬合機(jī)組調(diào)峰能力計(jì)算公式,具體內(nèi)容如下:(1)分析溴化鋰吸收式熱泵的熱力過(guò)程,設(shè)計(jì)并構(gòu)建基于效率因子法和基于實(shí)際循環(huán)的兩種模型,與現(xiàn)場(chǎng)調(diào)試數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證基于兩種吸收式熱泵的模型的計(jì)算精度,確定兩種模型的應(yīng)用場(chǎng)合和選用依據(jù)。(2)構(gòu)建基于Ebsilon的汽輪機(jī)變工況仿真模型,提出基于滑壓控制、汽輪機(jī)級(jí)組效率、和低壓缸排汽損失的修正方法,提高模型精度,對(duì)比機(jī)組不同負(fù)荷的設(shè)計(jì)數(shù)據(jù)和模型模擬結(jié)果,驗(yàn)證模型的精度。(3)借助模型分析了外界因素變動(dòng)(循環(huán)水、抽汽壓力和熱網(wǎng)水溫)對(duì)吸收式熱泵制熱系數(shù)COP的影響。模擬汽輪機(jī)變工況引起的相關(guān)供熱參數(shù)的變動(dòng),為系統(tǒng)實(shí)際調(diào)峰期間獲得穩(wěn)定的供熱負(fù)荷控制提供了數(shù)據(jù)支撐。(4)基于熱電聯(lián)產(chǎn)機(jī)組調(diào)峰限制因素,建立熱電聯(lián)產(chǎn)機(jī)組最大負(fù)荷和最小負(fù)荷的計(jì)算原則。借助仿真模型繪制出具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)的調(diào)峰運(yùn)行工況圖,擬合出最大調(diào)峰功率線和最小調(diào)峰功率線,并通過(guò)最小二乘法對(duì)熱電負(fù)荷進(jìn)行擬合,得到熱電聯(lián)產(chǎn)機(jī)組調(diào)峰運(yùn)行限值,為熱電負(fù)荷調(diào)度和電網(wǎng)調(diào)峰指導(dǎo)提供理論依據(jù)?紤]到機(jī)組調(diào)峰期間,熱泵COP易受眾多因素影響的特點(diǎn),分析了 COP變動(dòng)對(duì)機(jī)組調(diào)峰能力的影響,得到以下結(jié)論:吸收式熱泵供熱耦合熱電聯(lián)產(chǎn)影響機(jī)組調(diào)峰性能,當(dāng)機(jī)組供熱負(fù)荷較低時(shí),熱泵的運(yùn)行會(huì)降低機(jī)組的調(diào)峰能力;當(dāng)機(jī)組負(fù)荷增長(zhǎng)到一定階段,熱泵的運(yùn)行能顯著提高機(jī)組的調(diào)峰能力,COP達(dá)到設(shè)計(jì)值時(shí),最大供熱負(fù)荷下,采用熱泵供熱系統(tǒng)調(diào)峰能力比傳統(tǒng)供熱方式提高91%,且其對(duì)機(jī)組電力調(diào)峰能力的影響受熱泵制熱系數(shù)COP的影響,COP越大,熱泵供熱對(duì)熱電聯(lián)產(chǎn)機(jī)組調(diào)峰能力提升越明顯。
[Abstract]:Absorption heat pump is used to recover waste heat from heat and electricity exhaust steam for heating, which has the advantages of energy saving, environmental protection, economy and so on, so it is widely used in the cogeneration industry of heat and power, and improves the efficiency of energy utilization. The economic development has changed the power consumption structure and demand in our country. The power system presents the characteristics of increasing peak and valley difference and increasing peak demand. The cogeneration units participate in peak-shaving. It is an important way to reduce the peak and valley difference and solve the wind power consumption. The peak-shaving problem of heat and power cogeneration units with absorption heat pump heating has become a problem that needs to be solved at present. In this paper, the heat and power cogeneration units with absorption heat pump heating have been put into operation as the research object. In order to obtain the peak-shaving ability of this type of units, a thermodynamic model was constructed with Ebsilon software to simulate the operating conditions of the units, and the influence of thermal power peak-shaving on the heating performance of the units was explored. Determine the calculation principle of maximum peak-shaving capacity during the heating period of the unit, draw the peak-shaving operation diagram of the cogeneration unit with absorption heat pump, and fit the calculation formula of the peak-shaving capacity of the unit. The main contents are as follows: 1) the thermodynamic process of libr absorption heat pump is analyzed, and two models based on efficiency factor method and actual cycle are designed and constructed, and compared with the field debugging data. Verify the calculation accuracy of the two absorption heat pump models, determine the application of the two models and select the basis... 2) to build the turbine simulation model based on Ebsilon. Based on sliding pressure control, turbine stage efficiency, and low-pressure cylinder exhaust steam loss correction method is proposed to improve the model accuracy, and to compare the design data and model simulation results of different load units. To verify the accuracy of the model, the variation of external factors (circulating water) is analyzed with the help of the model. The influence of extraction pressure and heat network water temperature on the heating coefficient COP of absorption heat pump is simulated. It provides data support for obtaining stable heat supply load control during the actual peak-shaving period of the system) based on the limiting factors of peak-shaving of cogeneration units. The calculation principle of maximum load and minimum load of cogeneration unit is established, and the peak shaving operation diagram of heat and power cogeneration with absorption heat pump is drawn with the aid of simulation model. The maximum peak-shaving power line and the minimum peak-shaving power line are fitted and the thermoelectric load is fitted by the least square method. This paper provides a theoretical basis for thermoelectric load dispatching and peak-shaving guidance of power grid. Considering the characteristics that heat pump COP is easy to be affected by many factors during peak shaving, this paper analyzes the influence of COP variation on the peak-shaving ability of generating units. The following conclusions are obtained: the combined heating and electricity cogeneration of absorption heat pump affects the peak-shaving performance of the unit, and when the heat supply load of the unit is low, the operation of the heat pump will reduce the peak-shaving ability of the unit; When the load of the unit increases to a certain stage, the operation of the heat pump can significantly improve the peak-shaving capacity of the unit and the cop reaches the design value, under the maximum heating load. The peak-shaving capacity of heat pump heating system is 91% higher than that of the traditional heating mode, and the influence of heat pump heating coefficient (COP) on the power peak shaving capacity of the unit is greater than that of the traditional heating mode. Heat pump heating on the cogeneration unit peak-regulation capacity to enhance the more obvious.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM621
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳松,杜塏;吸收式熱泵初步分析與研究[J];制冷技術(shù);2003年03期
2 王長(zhǎng)慶;應(yīng)用高溫吸收式熱泵節(jié)能[J];節(jié)能技術(shù);1988年05期
3 李景齊;;吸收式熱泵的系統(tǒng)分析[J];節(jié)能;1988年02期
4 李景齊;;吸收式熱泵的分析[J];節(jié)能;1990年03期
5 陸震;;’91吸收式熱泵國(guó)際會(huì)議簡(jiǎn)況[J];制冷技術(shù);1992年02期
6 耿惠彬;;吸收式熱泵的動(dòng)特性[J];制冷技術(shù);1992年04期
7 鄒盛歐;吸收式熱泵的設(shè)計(jì)和應(yīng)用[J];化工裝備技術(shù);1994年02期
8 高相斌;升溫型吸收式熱泵及其應(yīng)用[J];國(guó)外油田工程;1995年05期
9 劉富;Ⅰ型吸收式熱泵及其應(yīng)用[J];應(yīng)用能源技術(shù);1995年03期
10 陸震;吸收式熱泵國(guó)際動(dòng)態(tài)[J];制冷與空調(diào);1996年04期
相關(guān)會(huì)議論文 前10條
1 岳獻(xiàn)芳;王立;;利用“低谷電”蓄熱的氨吸收式熱泵小型化系統(tǒng)[A];中國(guó)制冷學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
2 吳偉;張曉靈;石文星;李先庭;;氨水空氣源吸收式熱泵的設(shè)計(jì)與理論分析[A];慶祝北京制冷學(xué)會(huì)成立三十周年暨第十屆學(xué)術(shù)年會(huì)論文集[C];2010年
3 邵淵;周興禧;任海剛;;單級(jí)壓縮吸收式熱泵系統(tǒng)的研究比較[A];上海市制冷學(xué)會(huì)二○○一年學(xué)術(shù)年會(huì)論文集[C];2001年
4 吳集迎;;農(nóng)業(yè)沼氣熱泵可行性研究及經(jīng)濟(jì)性分析[A];第十二屆全國(guó)冷(熱)水機(jī)組與熱泵技術(shù)研討會(huì)論文集[C];2005年
5 岳獻(xiàn)芳;王立;孫淑鳳;童莉葛;;利用“低谷電”蓄熱氨吸收式熱泵系統(tǒng)的除冰分析[A];中國(guó)制冷學(xué)會(huì)2007學(xué)術(shù)年會(huì)論文集[C];2007年
6 馬最良;趙偉;;在我國(guó)應(yīng)用吸收式熱泵站的經(jīng)濟(jì)分析[A];全國(guó)暖通空調(diào)制冷1998年學(xué)術(shù)年會(huì)論文集(2)[C];1998年
7 陸震;王長(zhǎng)慶;唐勁松;尉遲斌;;溴化鋰高溫吸收式熱泵的變工況模擬[A];上海制冷學(xué)會(huì)一九八九年年會(huì)論文集[C];1989年
8 張啟;顧雛雋;彭鐵成;;地?zé)嵛帐綗岜迷谥械蜏毓嶂械膽?yīng)用[A];第三次全國(guó)地?zé)釋W(xué)術(shù)會(huì)議論文選集[C];1989年
9 陸震;范林;曹衛(wèi)華;;吸收式熱泵技術(shù)的新發(fā)展[A];上海市制冷學(xué)會(huì)一九九七年學(xué)術(shù)年會(huì)論文集[C];1997年
10 李占元;牛雪峰;高德民;孔德奇;范志平;;淺談吸收式熱泵在城市供熱電廠中的應(yīng)用[A];全國(guó)第八屆電站鍋爐專業(yè)技術(shù)交流年會(huì)論文集[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 ;吸收式熱泵回收凝聚廢熱工業(yè)技術(shù)[N];中國(guó)化工報(bào);2004年
2 焦念友;吸收式熱泵技術(shù)獲發(fā)明專利[N];中國(guó)化工報(bào);2003年
3 顧耀武;雙良股份:余熱利用帶來(lái)節(jié)能新思維[N];中國(guó)化工報(bào);2009年
4 本報(bào)記者 于海江 王琳;“十二五”我國(guó)余熱利用將駛?cè)搿翱燔嚨馈盵N];中國(guó)電力報(bào);2012年
5 記者 陳司 通訊員 武志國(guó);我市重點(diǎn)工程2×300MW熱電聯(lián)產(chǎn)機(jī)組擴(kuò)建項(xiàng)目正式獲國(guó)家核準(zhǔn)[N];駐馬店日?qǐng)?bào);2009年
6 本報(bào)記者 葉軍 通訊員 楊立彪;河南萬(wàn)基鋁業(yè)熱電聯(lián)產(chǎn)機(jī)組通過(guò)環(huán)評(píng)[N];中國(guó)工業(yè)報(bào);2009年
7 記者 龔硯慶;大唐林州熱電聯(lián)產(chǎn)機(jī)組項(xiàng)目獲國(guó)家核準(zhǔn)[N];河南日?qǐng)?bào);2009年
8 通訊員 史朝暉;洛陽(yáng)30萬(wàn)千瓦熱電聯(lián)產(chǎn)機(jī)組投運(yùn)[N];中國(guó)電力報(bào);2005年
9 本報(bào)記者 陳學(xué)慧;雙良股份:以先進(jìn)技術(shù)推動(dòng)節(jié)能減排[N];經(jīng)濟(jì)日?qǐng)?bào);2010年
10 通訊員 駱英輝 張英;華電投產(chǎn)新疆單機(jī)最大熱電聯(lián)產(chǎn)機(jī)組[N];中國(guó)電力報(bào);2009年
相關(guān)博士學(xué)位論文 前4條
1 劉鋒;第二類吸收式熱泵品位提升機(jī)理與系統(tǒng)集成研究[D];中國(guó)科學(xué)院工程熱物理研究所;2017年
2 鐘理;新型吸收式熱泵循環(huán)理論及實(shí)驗(yàn)的研究[D];華南理工大學(xué);1990年
3 閆曉娜;多熱源驅(qū)動(dòng)吸收式熱泵系統(tǒng)性能研究[D];浙江大學(xué);2014年
4 楊筱靜;蒸汽型雙效溴化鋰吸收式熱泵機(jī)組性能及優(yōu)化研究[D];天津大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉春巍;具有吸收式熱泵供熱的熱電聯(lián)產(chǎn)機(jī)組調(diào)峰特性分析[D];山東大學(xué);2017年
2 楊玉華;汽輪機(jī)乏汽余熱能提質(zhì)利用研究[D];河北聯(lián)合大學(xué);2014年
3 趙龍;熱電廠溴化鋰吸收式熱泵系統(tǒng)設(shè)計(jì)與仿真研究[D];華北電力大學(xué);2015年
4 王曙;吸收式熱泵回收汽機(jī)乏汽余熱技術(shù)研究[D];華北電力大學(xué);2015年
5 林春玲;溴化鋰吸收式熱泵系統(tǒng)回收糖廠循環(huán)水余熱運(yùn)行參數(shù)優(yōu)化及,
本文編號(hào):1470385
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1470385.html