負(fù)荷綜合模型與仿真適應(yīng)性研究
本文關(guān)鍵詞:負(fù)荷綜合模型與仿真適應(yīng)性研究 出處:《沈陽工程學(xué)院》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 負(fù)荷綜合模型 電動汽車 時序概率模型 蒙特卡洛模擬 仿真適應(yīng)性評估
【摘要】:在能源短缺、環(huán)境污染嚴(yán)重、全球氣候變暖的當(dāng)今世界,電動汽車等新能源的出現(xiàn),在緩解能源危機(jī)、促進(jìn)人與環(huán)境和諧發(fā)展等方面具有不可替代的優(yōu)勢。電動汽車等新能源接入容量的不斷增大,這不僅影響到了電網(wǎng)的結(jié)構(gòu),同時也使得潮流的流向發(fā)生了改變,進(jìn)一步的使得配電網(wǎng)的運行特性和負(fù)荷特性也受到影響。此外,全行業(yè)負(fù)荷的發(fā)展之快致使傳統(tǒng)的負(fù)荷結(jié)構(gòu)模型不能滿足當(dāng)前所需的電力系統(tǒng)仿真計算。因此,針對分電動汽車等新能源大規(guī)模接入條件下的全行業(yè)發(fā)展負(fù)荷建模研究顯得極為重要。本文分析了負(fù)荷建模的發(fā)展現(xiàn)狀,對全行業(yè)負(fù)荷劃分為四類典型的行業(yè)負(fù)荷,針對日益增長的電動車汽車充電負(fù)荷,基于蒙特卡洛模擬進(jìn)行建模,選取穩(wěn)定性指標(biāo)進(jìn)行適應(yīng)性評估,并根據(jù)回歸分析法做出預(yù)測,開展了負(fù)荷綜合模型與仿真適應(yīng)性研究。首先,通過多國內(nèi)外研究現(xiàn)狀的分析,發(fā)現(xiàn)現(xiàn)有的行業(yè)負(fù)荷結(jié)構(gòu)值的單一統(tǒng)計方式已不能滿足運行方式多變的系統(tǒng)仿真需求,存在著仿真結(jié)論片面、未考慮大規(guī)模電動汽車接入后的影響,以及仿真結(jié)論的準(zhǔn)確性等方面的問題,提出本課題研究的重要性和緊迫性。其次,通過負(fù)荷結(jié)構(gòu)模型的分析,確立本文所采用的建模方案:(1)將負(fù)荷進(jìn)行業(yè)劃分,分析各行業(yè)負(fù)荷的時序分布特性,依據(jù)抽樣統(tǒng)計數(shù)據(jù),分時段建立正態(tài)概率分布模型,最終以24時段形式構(gòu)成分行業(yè)全時段負(fù)荷時序概率模型集;(2)采用蒙特卡洛法模擬算法,針對分行業(yè)全時段負(fù)荷時序概率模型集,模擬出每個行業(yè)負(fù)荷在24時段內(nèi)的時序模型;(3)依據(jù)各行業(yè)負(fù)荷結(jié)構(gòu)值,應(yīng)用統(tǒng)計綜合方法,蒙特卡洛模擬出全行業(yè)負(fù)荷結(jié)構(gòu)時序模型;(4)建立新能源負(fù)荷電動汽車的負(fù)荷時序概率模型;(5)構(gòu)建含電動汽車的全行業(yè)負(fù)荷綜合模型。然后,對所建立的模型進(jìn)行仿真適應(yīng)性評估預(yù)測技術(shù)辨識。主要包括:(1)計及負(fù)荷綜合模型的穩(wěn)定性仿真分析;(2)針對不同負(fù)荷結(jié)構(gòu)方式、負(fù)荷等效方式的仿真分析結(jié)論,提出基于雷達(dá)圖理論的適應(yīng)性評估指標(biāo);(3)面向穩(wěn)定性仿真結(jié)論,展開回歸分析,選取最優(yōu)回歸方程作為仿真適應(yīng)性的預(yù)測模型。最后,以東北電網(wǎng)為實際應(yīng)用場景,按照實際數(shù)據(jù)建立了含電動汽車的全行業(yè)負(fù)荷綜合模型并進(jìn)行了仿真適應(yīng)性評估,仿真結(jié)果進(jìn)一步論證了本文負(fù)荷綜合模型的準(zhǔn)確性和研究的可行性。
[Abstract]:In the energy shortage, serious environmental pollution in the world today, global warming, electric vehicles and other new energy sources, to alleviate the energy crisis, it has irreplaceable advantages to promote the harmonious development of people and the environment. The increasing of electric vehicles and other new energy access capacity, which not only affect the power grid structure, at the same time the trend also makes the flow of change, also affected further the operation characteristic and load characteristic of distribution network. In addition, the whole industry is the development of fast load load structure model which can not be satisfied with the traditional power system simulation and the needed computing. Therefore, the research of load modeling the whole industry development of new electric vehicles under the condition of large scale access energy is very important. This paper analyzes the current development of load modeling, load on the entire industry is divided into four types of typical industry load, for the day Electric vehicle charging load increasing, Monte Carlo simulation modeling based on adaptive selection stability index evaluation, and according to the regression analysis predicted and studied the integrated model and Simulation of adaptive load. Firstly, through the analysis present situation of the research at home and abroad, found that single statistical industry load structure of the existing value has not to meet the changing needs of the operation mode of system simulation, simulation results exist one-sided, without considering the impact of large-scale electric vehicle access, and the simulation results and other aspects of the problem, put forward the research significance and urgency. Secondly, through the analysis of load structure model, establish the modeling scheme used in this paper: (1) will load the industry division, analysis of temporal distribution characteristics of each industry load, based on the statistical data of sampling, time distribution of construction attention state probability The model, in the final 24 hours form industry full time load sequential probability model; (2) using the Monte Carlo simulation algorithm, according to industry full time load time series probability model set, simulated time series model of each industry load during the 24 period; (3) on the basis of the industry structure of load value, comprehensive method statistics, Monte Carlo simulation of load time series model structure of the entire industry; (4) establish the probability model of load load time series of new energy electric vehicles; (5) to construct a comprehensive model of the whole industry of electric vehicle. Then the load bearing, prediction and evaluation technology based on the adaptive identification simulation model. Mainly includes: (1) simulation analysis stability and comprehensive load model; (2) according to different load structure, the equivalent load method the simulation analysis, put forward the adaptability evaluation index of radar based on graph theory; (3) the stability of the imitation The true conclusion, expand regression analysis, selecting the optimal regression equation as the predictive model of simulation adaptability. Finally, the Northeast power grid for the practical application of the scene, according to the actual data to establish a comprehensive model of the whole industry load with EV and simulation adaptability evaluation, simulation results demonstrate the feasibility and accuracy of the load model research.
【學(xué)位授予單位】:沈陽工程學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM714
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉剛;;基于氣象修正技術(shù)的遼寧電網(wǎng)負(fù)荷預(yù)測應(yīng)用研究[J];東北電力技術(shù);2015年11期
2 劉堅;;中國2030年電動汽車電力系統(tǒng)儲能應(yīng)用研究(上)[J];中國能源;2015年10期
3 李軒;楊健;;提高電網(wǎng)輸送能力工程中的負(fù)荷模型構(gòu)造研究[J];陜西電力;2015年09期
4 羅浩成;胡澤春;張洪財;;環(huán)境溫度對電動汽車充電負(fù)荷的影響分析[J];電力建設(shè);2015年07期
5 劉明;;基于連云港市的電力系統(tǒng)短期負(fù)荷預(yù)測研究[J];東北電力技術(shù);2015年02期
6 張永旺;趙偉;肖勇;林國營;陳曉爽;胡澤春;張洪財;徐智威;;基于分層架構(gòu)的大規(guī)模電動汽車有序充電仿真平臺[J];電網(wǎng)技術(shù);2015年01期
7 陳麗丹;張堯;;電動汽車充電負(fù)荷預(yù)測系統(tǒng)研究[J];電力科學(xué)與技術(shù)學(xué)報;2014年01期
8 鞠平;劉偉航;項麗;余一平;丁茂生;陳謙;;電力系統(tǒng)負(fù)荷建模的自動故障擬合法[J];電力系統(tǒng)自動化;2013年10期
9 王錫凡;邵成成;王秀麗;杜超;;電動汽車充電負(fù)荷與調(diào)度控制策略綜述[J];中國電機(jī)工程學(xué)報;2013年01期
10 鄭競宏;戴夢婷;張曼;王文倬;朱守真;;住宅區(qū)式電動汽車充電站負(fù)荷集聚特性及其建模[J];中國電機(jī)工程學(xué)報;2012年22期
,本文編號:1434778
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1434778.html