風(fēng)力發(fā)電系統(tǒng)容錯控制策略研究
發(fā)布時間:2018-01-08 09:15
本文關(guān)鍵詞:風(fēng)力發(fā)電系統(tǒng)容錯控制策略研究 出處:《江南大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 風(fēng)力發(fā)電系統(tǒng) 最大風(fēng)能捕獲 滑模控制器 傳感器故障 T-S模糊滑模觀測器 執(zhí)行器故障 故障重構(gòu) 傳感器硬件冗余 自適應(yīng)技術(shù) 容錯控制
【摘要】:風(fēng)能作為一種重要的自然能源,本身具有清潔環(huán)保、能量巨大、可持續(xù)供應(yīng)的特點,相比自然界的煤炭、石油、天然氣等其資源優(yōu)勢更加明顯,目前在緩解世界能源危機(jī)中占有重要地位。風(fēng)力發(fā)電設(shè)備通常建在高山或遠(yuǎn)離海岸的偏遠(yuǎn)地方,氣候變化不可預(yù)測,在這樣高度惡劣、復(fù)雜的工作環(huán)境中,傳感器、執(zhí)行器故障發(fā)生頻繁,再加上風(fēng)機(jī)本身具有非線性、多變量、強(qiáng)耦合等特點,對系統(tǒng)控制將會更加復(fù)雜。因此對風(fēng)力發(fā)電系統(tǒng)進(jìn)行實時故障診斷,實施有效的容錯控制是確保風(fēng)力發(fā)電系統(tǒng)可靠運行的重要手段。論文對控制系統(tǒng)現(xiàn)有的故障診斷技術(shù)、容錯控制策略以及近年來風(fēng)力發(fā)電系統(tǒng)的容錯控制方法進(jìn)行了詳細(xì)調(diào)研,從風(fēng)力機(jī)的空氣動力學(xué)效應(yīng)出發(fā)介紹了風(fēng)力機(jī)的最大風(fēng)能利用效率及各子系統(tǒng)的數(shù)學(xué)模型,討論了系統(tǒng)在三種不同風(fēng)速區(qū)域內(nèi)的運行狀態(tài)。通過對性能參數(shù)葉尖速比、風(fēng)能利用系數(shù)最優(yōu)值的計算及二者曲線圖的分析闡述了最大風(fēng)能捕獲控制原理,并進(jìn)行了仿真分析。針對風(fēng)力發(fā)電系統(tǒng)的非線性、變量之間強(qiáng)耦合特點,利用結(jié)構(gòu)簡單、逼近能力強(qiáng)的T-S模糊算法,建立系統(tǒng)全局T-S模糊模型。對滑?刂评碚摲治鼋o出等效控制量的求解方法并證明滑動模態(tài)對外界不確定因素的魯棒性。選取合適滑模面,利用系統(tǒng)的輸出信號作為控制器的輸入,基于LMI方法設(shè)計模糊滑?刂破饔糜陲L(fēng)力發(fā)電系統(tǒng)閉環(huán)反饋控制,確保系統(tǒng)性能參數(shù)葉尖速比和風(fēng)能利用系數(shù)維持在最優(yōu)值附近,實現(xiàn)部分負(fù)荷區(qū)的風(fēng)能最大捕獲?紤]滑模觀測器在對非線性系統(tǒng)進(jìn)行故障診斷時,能夠保持對外界擾動不敏感,具有強(qiáng)的魯棒性,論文將T-S模糊算法與滑模觀測器理論相結(jié)合,設(shè)計模糊T-S系統(tǒng)滑模觀測器對傳感器故障進(jìn)行重構(gòu)。然后對傳感器輸出信號進(jìn)行校正,以校正后的傳感器輸出信號代替控制器輸入,實現(xiàn)風(fēng)力發(fā)電系統(tǒng)主動容錯控制的目的。針對風(fēng)力發(fā)電系統(tǒng)中執(zhí)行器故障與傳感器故障并存情形,利用傳感器硬件冗余技術(shù)結(jié)合狀態(tài)觀測器,建立殘差邏輯判斷表,實現(xiàn)多故障檢測;其次通過引入一個簡單的濾波器,將傳感器故障轉(zhuǎn)化為執(zhí)行器故障,建立一個由原有的執(zhí)行器故障和傳感器故障組成的虛擬執(zhí)行器故障,通過對虛擬執(zhí)行器故障的重構(gòu)來實現(xiàn)兩種故障同時重構(gòu);將滑模算法與自適應(yīng)技術(shù)結(jié)合用于風(fēng)力發(fā)電系統(tǒng)的執(zhí)行器故障容錯控制中,保證故障系統(tǒng)能夠準(zhǔn)確跟蹤所設(shè)計的期望狀態(tài)和輸出軌跡,達(dá)到容錯控制目的。
[Abstract]:Wind energy is a kind of important natural energy, has tremendous energy, clean and environmental protection, sustainable supply characteristics, compared with the nature of coal, petroleum, natural gas and other resources more obvious advantages, currently occupies an important position in alleviating the energy crisis in the world. Wind power equipment are often built in remote areas or mountains away from the coast. Climate change is unpredictable, in such a highly complex work environment is bad, sensor, and the actuator faults occur frequently, and the wind machine itself has a nonlinear, multi variable, strong coupling characteristics, the control system will be more complicated. So the real-time fault diagnosis of wind power generation system, the implementation of fault tolerant control is effective an important means to ensure the reliable operation of wind power system. The fault diagnosis technology of the existing control system, fault-tolerant control strategy and system in recent years wind power capacity The wrong control method to make a detailed investigation of the mathematical model describes the maximum wind energy utilization efficiency and each subsystem from the aerodynamic effect of wind turbine, discusses the system in three different wind speed within the area of operation. Through the tip of the performance parameters calculation speed, wind energy utilization coefficient of the optimal value and the two analysis of the graph illustrates the maximum wind power capture control principle, and simulation analysis. Aiming at the nonlinear wind power system, variable strong coupling characteristics, with simple structure, strong approximation ability of T-S fuzzy algorithm, establish the system of global T-S fuzzy model. The theoretical analysis gives the equivalent control method of sliding mode control and that sliding mode robustness of uncertain external factors. Select the appropriate sliding surface, using the output signal as the input of the controller, the design model based on LMI method Fuzzy sliding mode controller for closed-loop feedback control of wind power generation system, ensure the system performance parameters of the tip speed ratio and wind power coefficient remained in the vicinity of the optimal value, realize the maximum wind energy capture part load. Considering the sliding mode observer in the fault diagnosis of nonlinear systems, can keep the external disturbance is not sensitive, has strong robustness, the T-S algorithm and fuzzy sliding mode observer theory are combined to reconstruct the sensor fault T-S system design of fuzzy sliding mode observer. Then the output of the sensor signal is corrected by the sensor output signal after correction instead of the input of the controller, realize the wind power generation system. The purpose of the active fault-tolerant control for wind power system actuator fault and sensor fault coexist situation according to the state observer, using the sensor hardware redundancy technology, the establishment of residual logic table implementation Multi fault detection; secondly, by introducing a simple filter, will be transformed into actuator fault sensor fault, the establishment of a composed original actuator and sensor faults of virtual actuator fault, through the reconstruction of virtual actuator failures to achieve two kinds of fault and reconstruction; sliding mode algorithm and adaptive technique used for actuator fault-tolerant control of wind power generation system, ensure the accuracy of tracking the design expectation state and output trajectory can achieve fault system, fault tolerant control.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM614
,
本文編號:1396505
本文鏈接:http://www.sikaile.net/kejilunwen/dianlidianqilunwen/1396505.html
最近更新
教材專著