基于健康監(jiān)測的橋梁結(jié)構(gòu)有限元模型修正方法研究
[Abstract]:Bridge engineering is a national lifeline project. After the bridge is opened to traffic, with the passage of time, it will be affected by environmental erosion, human factors, material aging, natural disasters and the interaction of vehicle loads, so it will be damaged and degraded to varying degrees. The bridge health monitoring system acquires the structure response information and the bridge environment condition from the sensor real-time monitoring data, calculates and analyzes the data, judges and evaluates the stress state and the resistance attenuation rule of the bridge structure, and ensures the bridge safe operation. Damage identification is the core of the task of health monitoring system. However, the premise of damage identification is to establish an accurate finite element model. In this paper, the dynamic response of bridge health monitoring system is taken as the research object of finite element model modification, and the application of neural network algorithm and response surface method in model modification is studied. The finite element model is modeled and analyzed by ANSYS software. Genetic algorithm is used to optimize neural network, MATLAB is used to program the model correction, and MATLAB is used to develop toolbox to realize the visualization of response surface model modification. The real-time monitoring data based on the health monitoring system can realize the real-time correction of the model and can provide an accurate finite element model for bridge structure calculation in time. The main research contents are as follows: 1. The theory of finite element model modification is introduced and the general process of finite element model modification is explained. 2. Aiming at the deficiency of the traditional acceleration sensor optimization arrangement method, this paper puts forward the method of this paper, combining the engineering experience to complete the optimization layout of the acceleration sensor of the Ju River Bridge; The advantages and disadvantages of different sensors are summarized, and the layout scheme of the full bridge sensor is introduced. 3. Aiming at the defects of general generalized regression neural network, an optimization method based on genetic algorithm is proposed and applied to finite element model modification. The application principle and flow chart of neural network in model modification are introduced in detail. 4. In the MATLAB software environment, the optimized generalized regression neural network model modification method proposed in this paper is applied to the supporting engineering. The accuracy, superiority and effectiveness of the neural network model modification method based on genetic algorithm are verified by the comparison and analysis of the modified results. 5. The principle and process of model modification based on response surface method are introduced, and applied to supporting engineering. A toolbox is developed by using MATLAB to visualize the response surface model modification.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U446;U441
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁鵬;李斌;王秀蘭;王曉光;吳向男;馬旭明;;基于橋梁健康監(jiān)測的有限元模型修正研究現(xiàn)狀與發(fā)展趨勢[J];長安大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
2 韓建平;駱勇鵬;鄭沛娟;劉云帥;;基于響應(yīng)面的剛構(gòu)-連續(xù)組合梁橋有限元模型修正[J];工程力學(xué);2013年12期
3 楊雅勛;郝憲武;孫磊;;剛構(gòu)-連續(xù)梁橋健康監(jiān)測系統(tǒng)設(shè)計(jì)[J];噪聲與振動(dòng)控制;2011年01期
4 宗周紅;高銘霖;夏樟華;;基于健康監(jiān)測的連續(xù)剛構(gòu)橋有限元模型確認(rèn)(Ⅰ)——基于響應(yīng)面法的有限元模型修正[J];土木工程學(xué)報(bào);2011年02期
5 鄧苗毅;任偉新;王復(fù)明;;基于靜力響應(yīng)面的結(jié)構(gòu)有限元模型修正方法[J];實(shí)驗(yàn)力學(xué);2008年02期
6 智翠梅;;均勻設(shè)計(jì)及優(yōu)化[J];化工中間體;2007年03期
7 閆桂榮;段忠東;歐進(jìn)萍;;遺傳算法在結(jié)構(gòu)有限元模型修正中的應(yīng)用[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2007年02期
8 李義強(qiáng);張彥兵;王新敏;;基于參數(shù)識(shí)別的鋼筋混凝土簡支梁橋靜力模型修正技術(shù)[J];石家莊鐵道學(xué)院學(xué)報(bào);2006年03期
9 李惠;歐進(jìn)萍;;斜拉橋結(jié)構(gòu)健康監(jiān)測系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)(II):系統(tǒng)實(shí)現(xiàn)[J];土木工程學(xué)報(bào);2006年04期
10 李惠;歐進(jìn)萍;;斜拉橋結(jié)構(gòu)健康監(jiān)測系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)(I):系統(tǒng)設(shè)計(jì)[J];土木工程學(xué)報(bào);2006年04期
相關(guān)博士學(xué)位論文 前1條
1 趙虎;大跨度斜拉橋運(yùn)營期性能監(jiān)測與評(píng)估[D];西南交通大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 倪富陶;基于動(dòng)力監(jiān)測的傳感器優(yōu)化算法及綜合評(píng)價(jià)研究[D];長安大學(xué);2016年
2 陳星;基于遺傳改進(jìn)廣義回歸神經(jīng)網(wǎng)絡(luò)的鐵路貨運(yùn)量預(yù)測研究[D];大連交通大學(xué);2015年
3 何濤;基于動(dòng)靜載試驗(yàn)的橋梁結(jié)構(gòu)模型修正方法應(yīng)用研究[D];太原理工大學(xué);2015年
4 黃瓊;基于響應(yīng)面法的鋼筋混凝土框架結(jié)構(gòu)有限元模型修正研究[D];蘭州理工大學(xué);2014年
5 陳舒婷;大跨徑連續(xù)剛構(gòu)橋健康監(jiān)測傳感器優(yōu)化布置及狀態(tài)評(píng)估研究[D];武漢理工大學(xué);2014年
6 殷廣慶;梁式橋有限元模型建立與修正及其應(yīng)用[D];大連理工大學(xué);2013年
7 駱勇鵬;基于響應(yīng)面法的橋梁結(jié)構(gòu)有限元模型靜動(dòng)力修正方法研究[D];蘭州理工大學(xué);2013年
8 丁德豪;單塔斜拉橋模型修正研究[D];西南交通大學(xué);2012年
9 毛建平;基于神經(jīng)網(wǎng)絡(luò)的橋梁結(jié)構(gòu)靜力有限元模型修正[D];吉林大學(xué);2011年
10 鐘穎;基于靜力測試數(shù)據(jù)的橋梁結(jié)構(gòu)有限元模型修正[D];西南交通大學(xué);2009年
,本文編號(hào):2342104
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2342104.html