基于響應(yīng)面法的橋梁結(jié)構(gòu)有限元模型修正與應(yīng)用
[Abstract]:Finite element analysis has been widely used in bridge structure analysis. A precise finite element model plays an important role in static and dynamic analysis, damage identification, health monitoring and so on. The initial finite element model based on the design drawings is usually different from the actual structure, so it is necessary to modify the initial model in order to obtain the accurate model. That is, the structure parameters in the initial model can be corrected by using the measured static and dynamic load data, so that the modified model can better reflect the actual stress state of the structure. At present, there are some drawbacks in the commonly used sensitivity-based correction methods, such as the inaccuracy of screening parameters, the construction of ill-conditioned sensitivity matrix, which leads to slow or even non-convergent convergence rate and so on. Considering the advantages of response surface method, this paper studies the application of response surface method in static and dynamic modification of finite element model of bridge structure. Benchmark model for damage identification, etc. Firstly, the theory of finite element model modification is briefly summarized, and the basic principle, basic process and key problems in the process of model modification are expounded. Then the response surface method is introduced emphatically, and the basic principle of model modification by response surface method is introduced, and each step of the method is described, in which the experimental design and optimization algorithm are emphatically introduced. The advantages and disadvantages and applicable conditions of each experimental design and optimization algorithm are compared and analyzed in detail. Secondly, the response surface method is applied to the static modification of the initial model of a single beam with the measured data of a single beam load test. The result of the correction proves the feasibility of the method. Finally, taking the Huanggong Bridge as an engineering example and taking the measured deflection and structural frequency as the response values, the initial model of the bridge is modified by the response surface method, which is compared with the calculated value of the initial model. The calculated value is closer to the measured value. The error of frequency before and after correction is reduced from about 10% to about 1%, and the error of deflection from about 20% to about 2%. Then the modified model is verified by the measured data of other working conditions, and the error of the result is obviously reduced, which verifies the reliability of the static and dynamic modification of the finite element model by using the response surface method (RSM).
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U441
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 梁鵬;李斌;王秀蘭;王曉光;吳向男;馬旭明;;基于橋梁健康監(jiān)測(cè)的有限元模型修正研究現(xiàn)狀與發(fā)展趨勢(shì)[J];長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
2 鮑諾;王春潔;;基于響應(yīng)面優(yōu)化的結(jié)構(gòu)有限元模型修正[J];北京航空航天大學(xué)學(xué)報(bào);2014年07期
3 程霄翔;費(fèi)慶國(guó);何頂頂;韓曉林;;基于響應(yīng)面的大型輸電塔結(jié)構(gòu)有限元模型動(dòng)力修正[J];振動(dòng)與沖擊;2011年05期
4 趙翔;李愛(ài)群;;基于動(dòng)態(tài)特性靈敏度分析的斜拉橋有限元模型修正[J];江蘇建筑;2010年04期
5 任偉新;陳華斌;;基于響應(yīng)面的橋梁有限元模型修正[J];土木工程學(xué)報(bào);2008年12期
6 鄧苗毅;任偉新;王復(fù)明;;基于靜力響應(yīng)面的結(jié)構(gòu)有限元模型修正方法[J];實(shí)驗(yàn)力學(xué);2008年02期
7 劉軍民;高岳林;;混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2008年02期
8 徐張明,沈榮瀛,華宏星;基于頻響函數(shù)相關(guān)性的靈敏度分析的有限元模型修正[J];機(jī)械強(qiáng)度;2003年01期
相關(guān)博士學(xué)位論文 前4條
1 艾永明;基于小波神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)損傷識(shí)別方法研究[D];長(zhǎng)安大學(xué);2012年
2 蔣寅軍;基于響應(yīng)面方法的復(fù)雜結(jié)構(gòu)模型修正方法研究[D];武漢大學(xué);2011年
3 方圣恩;基于有限元模型修正的結(jié)構(gòu)損傷識(shí)別方法研究[D];中南大學(xué);2010年
4 楊雅勛;基于動(dòng)力測(cè)試的橋梁結(jié)構(gòu)損傷識(shí)別與綜合評(píng)估理論研究[D];長(zhǎng)安大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 唐文文;基于一階優(yōu)化算法和響應(yīng)面算法的有限元模型修正方法研究[D];長(zhǎng)安大學(xué);2015年
2 呂天德;基于FEMU和SVM的橋梁損傷識(shí)別研究[D];西南交通大學(xué);2015年
3 黃瓊;基于響應(yīng)面法的鋼筋混凝土框架結(jié)構(gòu)有限元模型修正研究[D];蘭州理工大學(xué);2014年
4 李陽(yáng);基于代理模型的橋梁隨機(jī)有限元模型修正算法研究[D];哈爾濱工業(yè)大學(xué);2014年
5 殷廣慶;梁式橋有限元模型建立與修正及其應(yīng)用[D];大連理工大學(xué);2013年
6 駱勇鵬;基于響應(yīng)面法的橋梁結(jié)構(gòu)有限元模型靜動(dòng)力修正方法研究[D];蘭州理工大學(xué);2013年
7 劉辰宇;大跨度斜拉橋的有限元模型修正方法研究[D];大連理工大學(xué);2013年
8 羅建;序列二次規(guī)劃(SQP)算法及其在航天器追逃中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2012年
9 毛建平;基于神經(jīng)網(wǎng)絡(luò)的橋梁結(jié)構(gòu)靜力有限元模型修正[D];吉林大學(xué);2011年
10 何志軍;橋梁結(jié)構(gòu)剛度參數(shù)靜力方法優(yōu)化識(shí)別及有限元模型修正[D];長(zhǎng)沙理工大學(xué);2011年
,本文編號(hào):2330749
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2330749.html