懸索橋施工期主纜—貓道系統(tǒng)馳振及靜風穩(wěn)定性的干擾效應(yīng)
[Abstract]:Under the action of strong wind, the vibration amplitude of the main cable of some long-span suspension bridges under the tension of the cable is large, which seriously affects the construction period; and because the main cable is not a circular section when the bridge is completed during the construction period, there is the possibility of galloping instability; at the same time, the existence of catwalk has the aerodynamic interference effect on the static wind coefficient of the large-scale pointed main cable during the construction period. Therefore, it is of great theoretical and practical significance to study the wind resistance of the transient structure of long-span suspension bridges. In view of this, the following main research work has been carried out in this paper: 1. In this paper, CFD numerical simulation method is used to refer to the design parameters of catwalk and main cable during the construction period of a bridge. The test results verify the correctness of the numerical simulation parameters. Then the drag and lift coefficients of triangle, Pentagon and cusp-shaped main cables during construction without considering catwalk and catwalk are studied. Finally, the galloping force coefficients of main cables under different working conditions during construction are calculated by using Denharto criterion. As the number of strands of the main cable increases, the resistance coefficient of the main cable in the inverted triangle shape decreases and the lift coefficient increases gradually in the initial stage of the construction; the resistance coefficient of the main cable in the pentagon shape increases and the lift coefficient decreases gradually in the middle stage of the construction; the resistance coefficient of the main cable in the upper cusp shape increases and the lift coefficient increases continuously in the later stage of the construction. Comparing with the working condition without catwalk, the drag and lift coefficients of the main cable will decrease correspondingly when the catwalk is considered, and the aerodynamic interference effect of the catwalk can not be neglected when the galloping force coefficients of the main cable are calculated. In order to study the influence of catwalk design parameters on the galloping performance of main cables during construction period, a large-scale pointed main cable of a long-span suspension bridge under different construction conditions is selected as the main cable in this paper. Based on the wind tunnel test results of catwalk and the fluid dynamics software Fluent, the validity of numerical simulation parameters was verified firstly, and then the influence of catwalk height, width, side net ventilation rate, bottom net ventilation rate and the distance between surface layer and bottom of main cable on the main cable under construction was studied. The results show that: (1) the width of the catwalk, the height of the catwalk guardrail and the distance between the catwalk surface layer and the bottom of the main cable have little effect on the drag coefficient of the main cable during the construction period, but the lift coefficient will become larger when the main cable and the catwalk surface are used. When the distance between layers is 84cm, the width of catwalk is 4.5m, and the height of catwalk guardrail is 1.3m, it is more advantageous to prevent galloping instability; (2) the ventilation rate of catwalk side net can reduce the resistance coefficient of main cable during construction period, but the lift coefficient is irregular; when the ventilation rate of catwalk side net is 50%, it is more advantageous to prevent galloping instability; (3) the ventilation rate of catwalk bottom net is beneficial to the construction period. The main cable resistance and lift coefficient are more sensitive; when the ventilation rate of catwalk bottom net is 70%, it is more advantageous to prevent galloping instability; (4) when the distance between catwalk surface layer and main cable bottom is 0.84m, the height of catwalk is 1.3m, the width of catwalk is 4.5m, the ventilation rate of catwalk side net is 50% and the ventilation rate of catwalk bottom net is 70%, the main cable is most likely to gallop instability. 3. The aerodynamic performance and static wind stability of the catwalk vary with the increase of the number of layers of the main cables during the construction period because of the aerodynamic interference effect between the pointed main cables and the catwalk during the construction period of the long-span suspension bridge. The influence of main cable on the static wind stability of catwalk is studied. Firstly, the correctness of numerical simulation parameters is verified by referring to the wind tunnel test results of the catwalk of the bridge; then the three-component coefficients of the catwalk at different stages of the construction period are calculated; finally, the ANSYS software is redeveloped, considering the geometric nonlinearity and wind load of the catwalk. The results show that: (1) the resistance coefficient and torque coefficient of catwalk increase first and then decrease; (2) the lift coefficient of catwalk decreases first and then increases in the range of negative angle of attack, but in the case of positive angle of attack. (3) With the construction process of the top-type main cable, the instability critical wind speed of catwalk first decreases and then increases, and then decreases at the bridge completion stage. Wind protection measures must be taken.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U448.25
【相似文獻】
相關(guān)期刊論文 前10條
1 王俊;劉小勇;;多跨連續(xù)可橫移貓道系統(tǒng)設(shè)計與施工技術(shù)[J];公路;2011年09期
2 馬青云;盧偉;龍勇;劉意;鄧亨長;李永樂;肖安斌;;南溪長江大橋貓道設(shè)計關(guān)鍵技術(shù)[J];公路與汽運;2012年06期
3 尚龍;;馬鞍山公路長江大橋貓道設(shè)計與安裝施工技術(shù)[J];中國港灣建設(shè);2013年02期
4 光明;李鴻盛;殷建超;;劉家峽大橋三跨連續(xù)式貓道設(shè)計與架設(shè)[J];中外公路;2013年03期
5 欒昌花;沈斌;;南京長江第四大橋貓道結(jié)構(gòu)設(shè)計與施工[J];中國工程科學;2013年08期
6 廖禮坤;浙江平湖九龍山通天橋貓道的設(shè)計[J];西南交通大學學報;2003年02期
7 劉小軍;李連軍;;大跨度懸索橋貓道減振措施探討[J];山西交通科技;2007年01期
8 賈寧;劉健新;劉萬鋒;;懸索橋施工貓道靜風失穩(wěn)機理分析[J];公路交通科技;2008年03期
9 李宇;劉博;李加武;白樺;;澧水河大橋施工貓道的非線性靜風響應(yīng)分析[J];建筑科學與工程學報;2013年01期
10 邵春生;王東緒;盧偉;李永樂;;南溪長江大橋施工貓道靜風穩(wěn)定性研究[J];公路交通技術(shù);2013年03期
相關(guān)會議論文 前8條
1 李有為;鐘永新;;南京長江第四大橋貓道設(shè)計與架設(shè)施工[A];第二十屆全國橋梁學術(shù)會議論文集(上冊)[C];2012年
2 毛鴻銀;項海帆;;懸索橋施工貓道的抗風性能試驗研究[A];中國土木工程學會橋梁及結(jié)構(gòu)工程學會第十二屆年會論文集(下冊)[C];1996年
3 寇紅濤;崔建春;劉海偉;宋瑞;;液壓動力鉆桿排放貓道設(shè)計與應(yīng)用[A];2008年石油裝備學術(shù)年會暨慶祝中國石油大學建校55周年學術(shù)研討會論文集[C];2008年
4 姜友生;鄧海;張銘;丁望星;;宜昌長江公路大橋施工貓道抗風穩(wěn)定性分析[A];中國公路學會橋梁和結(jié)構(gòu)工程學會2001年橋梁學術(shù)討論會論文集[C];2001年
5 邱鴻華;肖鋒;陸永軍;;大跨徑懸索橋的貓道架設(shè)技術(shù)[A];二○○○年湖北省橋梁學術(shù)討論會論文集(下冊)[C];2000年
6 張建橋;劉陌生;;懸索橋貓道主索改進方案的介紹[A];中國公路學會橋梁和結(jié)構(gòu)工程分會2005年全國橋梁學術(shù)會議論文集[C];2005年
7 韋世國;薛光雄;沈良成;趙有明;李海;陳德榮;;潤揚大橋懸索橋貓道系統(tǒng)設(shè)計與施工[A];中國公路學會橋梁和結(jié)構(gòu)工程學會2003年全國橋梁學術(shù)會議論文集[C];2003年
8 黃輝;;懸索線形計算方法探討[A];2006鋼橋科技論壇全國學術(shù)會議論文集[C];2006年
相關(guān)重要報紙文章 前4條
1 本報記者 石建芬 通訊員 謝江 付喜艷;自動化動力貓道裝置[N];中國石化報;2014年
2 方飛;滬蓉西高速公路四渡河特大橋貓道架設(shè)完成[N];人民鐵道;2007年
3 歐建華 朱海 林蘭;4米寬的“貓道”在江風中來回擺動[N];鎮(zhèn)江日報;2010年
4 梅珂邋劉鏘 安家友 劉慎宏 鄧麗萍 見習記者 胡靜;欲與天公試比高[N];恩施日報;2008年
相關(guān)博士學位論文 前1條
1 賈寧;懸索橋施工貓道抗風減振性能精細化分析和試驗研究[D];長安大學;2008年
相關(guān)碩士學位論文 前10條
1 胡亞楠;懸索橋施工期主纜—貓道系統(tǒng)馳振及靜風穩(wěn)定性的干擾效應(yīng)[D];鄭州大學;2015年
2 盧義;大跨懸索橋貓道選型、控制與靜力檢算[D];長沙理工大學;2009年
3 李連軍;懸索橋貓道減振措施及渦振檢驗試驗研究[D];長安大學;2007年
4 王豐平;貓道設(shè)計、架設(shè)和靜力計算[D];長安大學;2004年
5 王東緒;懸索橋施工貓道風致、人致響應(yīng)及控制研究[D];西南交通大學;2013年
6 張佩;懸索橋貓道抗風靜力穩(wěn)定性研究[D];長安大學;2007年
7 賈寧;懸索橋貓道動力特性及抗風穩(wěn)定性研究[D];長安大學;2004年
8 王勇;大跨徑懸索橋貓道參數(shù)設(shè)計、架設(shè)與結(jié)構(gòu)分析[D];長安大學;2013年
9 張鵬;全液壓自動貓道鉆桿運移系統(tǒng)研究[D];吉林大學;2014年
10 高建強;全液壓自動貓道提升系統(tǒng)研究[D];吉林大學;2014年
,本文編號:2187888
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2187888.html