天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

懸索橋施工期主纜—貓道系統(tǒng)馳振及靜風穩(wěn)定性的干擾效應(yīng)

發(fā)布時間:2018-08-17 14:13
【摘要】:在強風作用下,部分大跨懸索橋施工期主纜在繩索的張拉下振動幅度較大,嚴重影響施工工期;且因施工期主纜并非成橋時圓形截面形式,存在馳振失穩(wěn)的可能性;同時,貓道的存在對施工期大尺度尖頂型主纜靜風系數(shù)存在氣動干擾效應(yīng)問題,可能影響主纜的馳振性能。因此,進行大跨徑懸索橋暫態(tài)結(jié)構(gòu)抗風性能具有較高的理論和實際意義。鑒于此本文進行了如下主要研究工作:1.本文采用CFD數(shù)值模擬方法,參考某大橋施工期貓道和主纜設(shè)計參數(shù),首先結(jié)合貓道風洞試驗的結(jié)果,驗證了數(shù)值模擬參數(shù)設(shè)置的正確性;然后分別研究了不考慮貓道和考慮貓道影響時,施工期三角形、五邊形和尖頂型形狀主纜的阻力和升力系數(shù);最后利用登哈托準則,計算了施工期主纜不同工況的馳振力系數(shù)。結(jié)果表明:隨著主纜索股層數(shù)的不斷增加,施工初期呈倒三角形形狀的主纜阻力系數(shù)不斷減小,升力系數(shù)逐步增加;施工中期呈五邊形形狀的主纜阻力系數(shù)不斷增加,升力系數(shù)逐步減小;施工后期呈上尖頂型形狀的主纜阻力系數(shù)不斷增加,升力系數(shù)總體上有減小趨勢;通過與無貓道工況的對比可知,考慮貓道時會造成施工期主纜阻力和升力系數(shù)相應(yīng)地減小,且計算主纜馳振力系數(shù)時,不能忽略貓道的氣動干擾效應(yīng)。2.研究表明,懸索橋施工期暫態(tài)主纜存在馳振失穩(wěn)的可能性,且因施工期主纜處于主纜施工腳手架貓道的半包圍之中,貓道設(shè)計參數(shù)的變化勢必對施工期主纜的馳振性能產(chǎn)生重要影響。為研究貓道設(shè)計參數(shù)對施工期主纜馳振性能的影響,本文以某大跨徑懸索橋施工期不同工況大尺度尖頂型主纜為研究對象,以貓道風洞試驗結(jié)果為參照,以流體力學軟件Fluent為工具,首先驗證了數(shù)值模擬參數(shù)設(shè)置的正確性;進而研究了貓道高度、貓道寬度、貓道側(cè)網(wǎng)透風率、貓道底網(wǎng)透風率,以及貓道面層與主纜底部間距等參數(shù)影響下施工期主纜的氣動力系數(shù);最后運用登哈托準則分析了貓道設(shè)計參數(shù)對施工期主纜馳振性能的影響。研究結(jié)果表明:(1)貓道寬度、貓道護欄高度以及貓道面層與主纜底部間距對施工期主纜阻力系數(shù)影響不大,但會導(dǎo)致升力系數(shù)變大;當主纜與貓道面層間距為84cm、貓道寬度為4.5m、貓道護欄高度為1.3m時,對馳振失穩(wěn)預(yù)防較為有利;(2)貓道側(cè)網(wǎng)透風率可導(dǎo)致施工期主纜阻力系數(shù)變小,但升力系數(shù)較無規(guī)律;當貓道側(cè)網(wǎng)透風率為50%時,對馳振失穩(wěn)預(yù)防較為有利;(3)貓道底網(wǎng)透風率對施工期主纜阻力和升力系數(shù)影響較為敏感;當貓道底網(wǎng)透風率為70%時對馳振失穩(wěn)預(yù)防較為有利;(4)當貓道面層與主纜底部間距為0.84m、貓道高度為1.3m、貓道寬度為4.5m、貓道側(cè)網(wǎng)透風率為50%和貓道底網(wǎng)透風率為70%時,主纜發(fā)生馳振失穩(wěn)可能性最小。3.由于大跨徑懸索橋施工期尖頂型主纜與貓道間存在氣動干擾效應(yīng),且主纜索股層數(shù)在施工期不斷增加,因此,貓道的氣動性能和靜風穩(wěn)定性也隨之變化。本文以某大跨徑懸索橋施工期尖頂型主纜和貓道為背景,研究了施工期尖頂型主纜對貓道靜風穩(wěn)定性影響問題。首先,參照該橋貓道風洞試驗的結(jié)果,驗證了數(shù)值模擬參數(shù)設(shè)置的正確性;進而計算了施工期尖頂型主纜不同階段貓道的三分力系數(shù);最后對ANSYS軟件進行了二次開發(fā),考慮了貓道的幾何非線性和風荷載非線性,進行了施工期尖頂型主纜不同階段貓道靜風穩(wěn)定性分析。研究結(jié)果表明:考慮施工期尖頂型主纜影響時,(1)貓道阻力系數(shù)和扭矩系數(shù)呈先增大后減小的趨勢;(2)貓道升力系數(shù)在負攻角范圍內(nèi)呈先減小后增大趨勢,但在正攻角范圍內(nèi)變化不大;(3)隨尖頂型主纜的施工進程,貓道失穩(wěn)臨界風速呈先減小后增大,成橋階段又減小的趨勢。其中,15#工況失穩(wěn)臨界風速接近大橋施工階段和成橋狀態(tài)10米高度處的空氣靜力穩(wěn)定性檢驗風速,施工時應(yīng)注意加強觀測,必要時須采取抗風保護措施。
[Abstract]:Under the action of strong wind, the vibration amplitude of the main cable of some long-span suspension bridges under the tension of the cable is large, which seriously affects the construction period; and because the main cable is not a circular section when the bridge is completed during the construction period, there is the possibility of galloping instability; at the same time, the existence of catwalk has the aerodynamic interference effect on the static wind coefficient of the large-scale pointed main cable during the construction period. Therefore, it is of great theoretical and practical significance to study the wind resistance of the transient structure of long-span suspension bridges. In view of this, the following main research work has been carried out in this paper: 1. In this paper, CFD numerical simulation method is used to refer to the design parameters of catwalk and main cable during the construction period of a bridge. The test results verify the correctness of the numerical simulation parameters. Then the drag and lift coefficients of triangle, Pentagon and cusp-shaped main cables during construction without considering catwalk and catwalk are studied. Finally, the galloping force coefficients of main cables under different working conditions during construction are calculated by using Denharto criterion. As the number of strands of the main cable increases, the resistance coefficient of the main cable in the inverted triangle shape decreases and the lift coefficient increases gradually in the initial stage of the construction; the resistance coefficient of the main cable in the pentagon shape increases and the lift coefficient decreases gradually in the middle stage of the construction; the resistance coefficient of the main cable in the upper cusp shape increases and the lift coefficient increases continuously in the later stage of the construction. Comparing with the working condition without catwalk, the drag and lift coefficients of the main cable will decrease correspondingly when the catwalk is considered, and the aerodynamic interference effect of the catwalk can not be neglected when the galloping force coefficients of the main cable are calculated. In order to study the influence of catwalk design parameters on the galloping performance of main cables during construction period, a large-scale pointed main cable of a long-span suspension bridge under different construction conditions is selected as the main cable in this paper. Based on the wind tunnel test results of catwalk and the fluid dynamics software Fluent, the validity of numerical simulation parameters was verified firstly, and then the influence of catwalk height, width, side net ventilation rate, bottom net ventilation rate and the distance between surface layer and bottom of main cable on the main cable under construction was studied. The results show that: (1) the width of the catwalk, the height of the catwalk guardrail and the distance between the catwalk surface layer and the bottom of the main cable have little effect on the drag coefficient of the main cable during the construction period, but the lift coefficient will become larger when the main cable and the catwalk surface are used. When the distance between layers is 84cm, the width of catwalk is 4.5m, and the height of catwalk guardrail is 1.3m, it is more advantageous to prevent galloping instability; (2) the ventilation rate of catwalk side net can reduce the resistance coefficient of main cable during construction period, but the lift coefficient is irregular; when the ventilation rate of catwalk side net is 50%, it is more advantageous to prevent galloping instability; (3) the ventilation rate of catwalk bottom net is beneficial to the construction period. The main cable resistance and lift coefficient are more sensitive; when the ventilation rate of catwalk bottom net is 70%, it is more advantageous to prevent galloping instability; (4) when the distance between catwalk surface layer and main cable bottom is 0.84m, the height of catwalk is 1.3m, the width of catwalk is 4.5m, the ventilation rate of catwalk side net is 50% and the ventilation rate of catwalk bottom net is 70%, the main cable is most likely to gallop instability. 3. The aerodynamic performance and static wind stability of the catwalk vary with the increase of the number of layers of the main cables during the construction period because of the aerodynamic interference effect between the pointed main cables and the catwalk during the construction period of the long-span suspension bridge. The influence of main cable on the static wind stability of catwalk is studied. Firstly, the correctness of numerical simulation parameters is verified by referring to the wind tunnel test results of the catwalk of the bridge; then the three-component coefficients of the catwalk at different stages of the construction period are calculated; finally, the ANSYS software is redeveloped, considering the geometric nonlinearity and wind load of the catwalk. The results show that: (1) the resistance coefficient and torque coefficient of catwalk increase first and then decrease; (2) the lift coefficient of catwalk decreases first and then increases in the range of negative angle of attack, but in the case of positive angle of attack. (3) With the construction process of the top-type main cable, the instability critical wind speed of catwalk first decreases and then increases, and then decreases at the bridge completion stage. Wind protection measures must be taken.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U448.25

【相似文獻】

相關(guān)期刊論文 前10條

1 王俊;劉小勇;;多跨連續(xù)可橫移貓道系統(tǒng)設(shè)計與施工技術(shù)[J];公路;2011年09期

2 馬青云;盧偉;龍勇;劉意;鄧亨長;李永樂;肖安斌;;南溪長江大橋貓道設(shè)計關(guān)鍵技術(shù)[J];公路與汽運;2012年06期

3 尚龍;;馬鞍山公路長江大橋貓道設(shè)計與安裝施工技術(shù)[J];中國港灣建設(shè);2013年02期

4 光明;李鴻盛;殷建超;;劉家峽大橋三跨連續(xù)式貓道設(shè)計與架設(shè)[J];中外公路;2013年03期

5 欒昌花;沈斌;;南京長江第四大橋貓道結(jié)構(gòu)設(shè)計與施工[J];中國工程科學;2013年08期

6 廖禮坤;浙江平湖九龍山通天橋貓道的設(shè)計[J];西南交通大學學報;2003年02期

7 劉小軍;李連軍;;大跨度懸索橋貓道減振措施探討[J];山西交通科技;2007年01期

8 賈寧;劉健新;劉萬鋒;;懸索橋施工貓道靜風失穩(wěn)機理分析[J];公路交通科技;2008年03期

9 李宇;劉博;李加武;白樺;;澧水河大橋施工貓道的非線性靜風響應(yīng)分析[J];建筑科學與工程學報;2013年01期

10 邵春生;王東緒;盧偉;李永樂;;南溪長江大橋施工貓道靜風穩(wěn)定性研究[J];公路交通技術(shù);2013年03期

相關(guān)會議論文 前8條

1 李有為;鐘永新;;南京長江第四大橋貓道設(shè)計與架設(shè)施工[A];第二十屆全國橋梁學術(shù)會議論文集(上冊)[C];2012年

2 毛鴻銀;項海帆;;懸索橋施工貓道的抗風性能試驗研究[A];中國土木工程學會橋梁及結(jié)構(gòu)工程學會第十二屆年會論文集(下冊)[C];1996年

3 寇紅濤;崔建春;劉海偉;宋瑞;;液壓動力鉆桿排放貓道設(shè)計與應(yīng)用[A];2008年石油裝備學術(shù)年會暨慶祝中國石油大學建校55周年學術(shù)研討會論文集[C];2008年

4 姜友生;鄧海;張銘;丁望星;;宜昌長江公路大橋施工貓道抗風穩(wěn)定性分析[A];中國公路學會橋梁和結(jié)構(gòu)工程學會2001年橋梁學術(shù)討論會論文集[C];2001年

5 邱鴻華;肖鋒;陸永軍;;大跨徑懸索橋的貓道架設(shè)技術(shù)[A];二○○○年湖北省橋梁學術(shù)討論會論文集(下冊)[C];2000年

6 張建橋;劉陌生;;懸索橋貓道主索改進方案的介紹[A];中國公路學會橋梁和結(jié)構(gòu)工程分會2005年全國橋梁學術(shù)會議論文集[C];2005年

7 韋世國;薛光雄;沈良成;趙有明;李海;陳德榮;;潤揚大橋懸索橋貓道系統(tǒng)設(shè)計與施工[A];中國公路學會橋梁和結(jié)構(gòu)工程學會2003年全國橋梁學術(shù)會議論文集[C];2003年

8 黃輝;;懸索線形計算方法探討[A];2006鋼橋科技論壇全國學術(shù)會議論文集[C];2006年

相關(guān)重要報紙文章 前4條

1 本報記者 石建芬 通訊員 謝江 付喜艷;自動化動力貓道裝置[N];中國石化報;2014年

2 方飛;滬蓉西高速公路四渡河特大橋貓道架設(shè)完成[N];人民鐵道;2007年

3 歐建華 朱海 林蘭;4米寬的“貓道”在江風中來回擺動[N];鎮(zhèn)江日報;2010年

4 梅珂邋劉鏘 安家友 劉慎宏 鄧麗萍 見習記者 胡靜;欲與天公試比高[N];恩施日報;2008年

相關(guān)博士學位論文 前1條

1 賈寧;懸索橋施工貓道抗風減振性能精細化分析和試驗研究[D];長安大學;2008年

相關(guān)碩士學位論文 前10條

1 胡亞楠;懸索橋施工期主纜—貓道系統(tǒng)馳振及靜風穩(wěn)定性的干擾效應(yīng)[D];鄭州大學;2015年

2 盧義;大跨懸索橋貓道選型、控制與靜力檢算[D];長沙理工大學;2009年

3 李連軍;懸索橋貓道減振措施及渦振檢驗試驗研究[D];長安大學;2007年

4 王豐平;貓道設(shè)計、架設(shè)和靜力計算[D];長安大學;2004年

5 王東緒;懸索橋施工貓道風致、人致響應(yīng)及控制研究[D];西南交通大學;2013年

6 張佩;懸索橋貓道抗風靜力穩(wěn)定性研究[D];長安大學;2007年

7 賈寧;懸索橋貓道動力特性及抗風穩(wěn)定性研究[D];長安大學;2004年

8 王勇;大跨徑懸索橋貓道參數(shù)設(shè)計、架設(shè)與結(jié)構(gòu)分析[D];長安大學;2013年

9 張鵬;全液壓自動貓道鉆桿運移系統(tǒng)研究[D];吉林大學;2014年

10 高建強;全液壓自動貓道提升系統(tǒng)研究[D];吉林大學;2014年



本文編號:2187888

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2187888.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶42814***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com