面向路網(wǎng)運(yùn)行管理的異構(gòu)傳感網(wǎng)協(xié)同設(shè)計方法研究
[Abstract]:The expressway network is a strategic infrastructure to support the development of the national economy, to serve the people and to ensure the security of national defense. By the end of 2014, the total mileage of the highway in China is close to 112 thousand kilometers, basically reaching the planned highway network scale and taking over 30% of the passenger and cargo turnover of the national highway. At the same time, the people are safe and convenient. Mobile travel experience, cross regional travel service, extreme weather frequency and so on have put forward higher requirements for the management and service of large-scale road network. From construction management to road network operation monitoring, emergency disposal and service management of road network has become an inevitable choice. Comprehensive transportation potential, improving the service experience across the region and improving the cooperative disposal capacity of the sudden state, the road network operation and management departments need: 1) to plan the monitoring system, reliably estimate and predict the dynamic traffic state of the network range; 2) to set up the network management and control system, and to realize the "remote guidance, the near diversion, the key to the key" in the emergency situation. Point field control "cooperative scheduling strategy"; 3) comprehensive use of vehicle and road side information service facilities to provide efficient information services. Thus, it can be seen that better adaptation to regional network management, emergency disposal and public service sensing network design has become an urgent problem. At the same time, along with the development of information and communication technology, road network transportation The dependence degree on cross section traffic flow detection equipment is reduced. With the completion of the national freeway network, the expressway interactive platform, represented by Dedicated Short Range Communication (DSRC), has been developed rapidly; with the increasing number of unmanned aerial vehicles (UAV) technology With the gradual opening up of the mature and low altitude fields, the mobile sensing technology represented by unmanned aerial vehicles (UAV) has been applied in traffic management. The main purpose of this paper is to integrate the new generation of traffic monitoring technology with a new generation of traffic monitoring technology, and to coordinate the network management and control of the road network. On the basis of optimization theory and traffic distribution theory, this paper studies the key link identification method based on equilibrium distribution based on the optimization theory and traffic distribution theory, and puts forward the optimal design method of DSRC network with considerable controllability in road network, and constructs a network oriented operation form. The main research results include: (1) carry out the applicability analysis of multi-source heterogeneous sensing equipment, analyze the main requirements and monitoring factors of road network operation and management, analyze the types of detection parameters, data quality, cost, and the applicability of the requirements for the operation and management of the road network. The layout optimization of the device and the collaborative design of multi-source heterogeneous sensing network are laid. (2) to carry out the identification research on the key section of road network based on balanced distribution, considering many factors, such as road network structure, traffic demand, travel behavior characteristics and so on. In view of the joint effect of multi section failure, the K- short-circuit diameter and the user equilibrium distribution are proposed. The key section evaluation method of road network key section has constructed the key link set identification model of the link failure probability distribution. Further, the key section identification model based on the recoverability of section capacity is constructed for the road damage resistance and the recovery cost of rescue is constrained, and the validity and feasibility of the model are verified on different networks. (3) The optimization design method of DSRC network oriented to the observable controllability of road network. The DSRC roadside device with two-way communication features can synchronize the acquisition of traffic state information and the release function of the induced information. In this paper, the observability and controllability frame model of road network is proposed for the network monitoring and control requirements of the expressway. In order to minimize the uncertainty of road network travel time and minimize the total travel time of the system, the optimal layout of the DSRC network within the network range is realized, and the model is verified with the highway channel. (4) Unmanned maneuver for network running state detection is carried out. In order to minimize the cost of event delay detection of unmanned aerial vehicles and fixed sensors on the space-time network, this paper aims at the rapid monitoring of emergency events and the demand for daily inspection, considering the physical topology structure of the road network and the space-time diffusivity of events. Based on the construction cost of fixed sensor, a dynamic programming model of unmanned aerial vehicle (UAV) with fixed sensor is proposed. According to two known and unknown conditions of fixed traffic flow sensor, the Lagrange relaxation algorithm is constructed respectively. In the case of fixed traffic flow sensor, the model is simplified as the classic time varying minimum path. The cost and the model and algorithm are verified by using different levels of road network.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TP212.9;U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周希辰;寧宣熙;黃孝鵬;;動態(tài)構(gòu)建海上跨平臺自主傳感網(wǎng)流量優(yōu)控技術(shù)[J];艦船科學(xué)技術(shù);2014年06期
2 李燕君;孫揚(yáng);;低占空比傳感網(wǎng)的端到端延遲控制方法[J];中南大學(xué)學(xué)報(自然科學(xué)版);2013年S1期
3 任偉;張金偉;;基于傳感網(wǎng)的火災(zāi)逃生智能路徑選擇[J];科技視界;2014年08期
4 牛旭亮;李昊陽;王慧鑫;;基于數(shù)據(jù)查詢的傳感網(wǎng)網(wǎng)關(guān)地址映射方法[J];科技創(chuàng)新與應(yīng)用;2012年06期
5 ;首個傳感網(wǎng)國家標(biāo)準(zhǔn)將誕生[J];中國設(shè)備工程;2011年08期
6 張洪喜;高雪;方伯們;;基于傳感網(wǎng)的鐵路貨場智能系統(tǒng)研究與開發(fā)[J];交通科技與經(jīng)濟(jì);2012年01期
7 滕云;;基于傳感網(wǎng)的電纜監(jiān)測系統(tǒng)實現(xiàn)[J];電腦知識與技術(shù);2009年34期
8 付蔚;稅夢玲;王平;;6LoWPAN家庭無線醫(yī)療傳感網(wǎng)及監(jiān)測節(jié)點的研究[J];自動化儀表;2012年12期
9 鄭增威,吳朝暉,林懷忠,鄭扣根;可靠傳感網(wǎng)聚類路由算法研究[J];浙江大學(xué)學(xué)報(工學(xué)版);2005年10期
10 王希忠;鐘曉睿;陳德運(yùn);曲家興;方舟;馬春光;;基于異構(gòu)性的傳感網(wǎng)密鑰預(yù)分配協(xié)議設(shè)計與評測[J];四川大學(xué)學(xué)報(工程科學(xué)版);2014年03期
相關(guān)會議論文 前8條
1 王慧;陳金鷹;朱軍;;傳感網(wǎng)——又一次信息產(chǎn)業(yè)浪潮[A];四川省通信學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
2 趙振宇;陳金鷹;;傳感網(wǎng)及3G新商機(jī)[A];四川省通信學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
3 何明;;傳感網(wǎng)在紡織業(yè)的應(yīng)用[A];“五洋杯”2010年江蘇紡織學(xué)術(shù)論文集[C];2011年
4 楊光松;肖明波;程恩;張靜;;水聲傳感網(wǎng)中節(jié)省能量的尋路機(jī)制[A];中國通信學(xué)會通信軟件技術(shù)委員會2009年學(xué)術(shù)會議論文集[C];2009年
5 李燕君;孫揚(yáng);;低占空比傳感網(wǎng)的端到端延遲控制方法[A];2013年中國智能自動化學(xué)術(shù)會議論文集(第四分冊)[C];2013年
6 陳曦;馮瑞;張衛(wèi);;面向上層應(yīng)用的傳感網(wǎng)數(shù)據(jù)過濾方法[A];2007中國控制與決策學(xué)術(shù)年會論文集[C];2007年
7 張雪坤;陳金鷹;季翔宇;;ZigBee技術(shù)在傳感網(wǎng)中的應(yīng)用研究[A];四川省通信學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
8 李姍姍;吳慧;盧祥林;饒云江;王杰;;基于光纖傳感網(wǎng)技術(shù)的智能油田綜合監(jiān)測系統(tǒng)[A];全國第15次光纖通信暨第16屆集成光學(xué)學(xué)術(shù)會議論文集[C];2011年
相關(guān)重要報紙文章 前10條
1 瓊玲 虹全;無錫加快傳感網(wǎng)技術(shù)攻關(guān)[N];中國電子報;2009年
2 揚(yáng)帆;無錫北郵攜手建設(shè)傳感網(wǎng)研究院[N];無錫日報;2009年
3 龔興;工信部將全力支持傳感網(wǎng)發(fā)展[N];中國工業(yè)報;2009年
4 記者 揚(yáng)帆;爭分奪秒,進(jìn)軍傳感網(wǎng)產(chǎn)業(yè)[N];無錫日報;2009年
5 叢林;專家聚錫研究傳感網(wǎng)標(biāo)準(zhǔn)制定[N];無錫日報;2009年
6 本報記者 過國忠 通訊員 王磊;讓傳感網(wǎng)技術(shù)造福于人[N];科技日報;2009年
7 記者 過國忠 通訊員 吳偉新;國家(無錫)傳感網(wǎng)國際科技合作基地揭牌[N];科技日報;2009年
8 英潔;無錫傳感網(wǎng)產(chǎn)業(yè)快馬加鞭[N];無錫日報;2009年
9 本報記者;合作共建國家傳感網(wǎng)創(chuàng)新示范區(qū)[N];無錫日報;2009年
10 陸峰;合作共建國家傳感網(wǎng)創(chuàng)新示范區(qū)[N];新華日報;2009年
相關(guān)博士學(xué)位論文 前10條
1 陳向益;異構(gòu)傳感網(wǎng)復(fù)件攻擊檢測方法研究[D];江蘇大學(xué);2015年
2 胡升澤;面向應(yīng)急協(xié)同的移動傳感網(wǎng)數(shù)據(jù)傳輸關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
3 王曉蕾;地理空間傳感網(wǎng)語義建模與推理研究[D];武漢大學(xué);2015年
4 趙園;移動傳感網(wǎng)的一致性控制研究與應(yīng)用[D];大連海事大學(xué);2016年
5 黃龍軍;無線納米傳感網(wǎng)節(jié)能編碼研究[D];浙江工業(yè)大學(xué);2016年
6 徐士博;光纖智能傳感網(wǎng)理論及關(guān)鍵技術(shù)研究[D];天津大學(xué);2015年
7 張紀(jì)升;面向路網(wǎng)運(yùn)行管理的異構(gòu)傳感網(wǎng)協(xié)同設(shè)計方法研究[D];北京交通大學(xué);2015年
8 陳澤強(qiáng);傳感網(wǎng)整合關(guān)鍵技術(shù)研究[D];武漢大學(xué);2012年
9 張帆;機(jī)械裝備狀態(tài)監(jiān)測的光纖光柵傳感網(wǎng)相關(guān)理論與技術(shù)研究[D];武漢理工大學(xué);2014年
10 孔令和;綠色傳感網(wǎng)的資源優(yōu)化研究[D];上海交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 吉書強(qiáng);基于壓縮感知的氣象傳感網(wǎng)數(shù)據(jù)融合技術(shù)研究[D];南京信息工程大學(xué);2015年
2 王東亮;基于蟻群算法的傳感網(wǎng)路由仿真系統(tǒng)設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
3 黃敏;基于藍(lán)牙4.0的人體傳感網(wǎng)的研究與設(shè)計[D];杭州電子科技大學(xué);2015年
4 邵媛媛;傳感網(wǎng)的抽象與適配[D];南京郵電大學(xué);2015年
5 李守峰;基于藍(lán)光LED的水下傳感網(wǎng)通信系統(tǒng)設(shè)計與實現(xiàn)[D];南京郵電大學(xué);2015年
6 曹光耀;森林生態(tài)傳感網(wǎng)的實用化定位與巡檢策略研究[D];北京林業(yè)大學(xué);2016年
7 吳碧霞;認(rèn)知傳感網(wǎng)中節(jié)能感知、MAC協(xié)議識別與調(diào)制識別算法研究[D];南京理工大學(xué);2016年
8 王萌萌;基于壓縮感知的海洋監(jiān)測傳感網(wǎng)高能效傳輸方法[D];哈爾濱工業(yè)大學(xué);2016年
9 霍揚(yáng)揚(yáng);異構(gòu)傳感網(wǎng)信號融合關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
10 董文超;面向應(yīng)用的傳感網(wǎng)虛擬化技術(shù)的研究與實現(xiàn)[D];南京郵電大學(xué);2016年
,本文編號:2156192
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2156192.html