事件狀態(tài)下快速路行程時間預測研究
[Abstract]:As one of the most concerned traffic parameters, travel time is of great significance for daily work and life planning. However, due to the uncertainty and unpredictability of traffic events, especially on the urban expressway with increasing traffic volume, minor traffic events may lead to a large area of traffic delays and bring great inconvenience to the residents' life and work. Therefore, by studying the characteristics of traffic flow in the event state, establishing the expressway travel time prediction model under the event state, constructing the travel time prediction, releasing the information, The traffic guidance intelligent transportation system subsystem is very important to reduce travel delay. Firstly, this paper describes the basic theory and method of expressway travel time prediction in event state from three aspects: the capacity of expressway under event state, the statistical characteristics of traffic flow queuing dissipation and the method of travel time prediction. Secondly, by analyzing the advantages and disadvantages of the current travel time prediction methods, and starting from the statistical characteristics of traffic flow under the event state, a combined model for the prediction of the expressway travel time under the event state based on the fluctuation theory and BP neural network is established. Finally, based on the historical statistical data of traffic events on the fourth Ring Road in Beijing, the actual travel time of the road sections is calculated according to the travel time between the loops on the road sections. The traffic volume and the local speed of 36 hours before and after the incident are calculated. The statistical time of each event stage is substituted into the prediction model to calculate the predicted travel time of road sections. The model is evaluated by using three indexes: absolute mean error, root mean square error and average absolute percent error. The results show that the combined prediction model has higher prediction accuracy than the single prediction model. The travel time prediction model in the event state is applied to the intelligent transportation system, and the basic framework of the expressway travel time prediction subsystem in the event state of the intelligent transportation system is constructed.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U491
【參考文獻】
相關(guān)期刊論文 前10條
1 韋偉;毛保華;陳紹寬;許得杰;;基于當期事件識別的擁堵傳播特征研究[J];交通運輸系統(tǒng)工程與信息;2016年04期
2 李昂;李碩;李玲;;城市道路路段行程時間計算模型研究[J];公路工程;2016年03期
3 羅樞政;;高德地圖實時路況信息上線交通誘導屏[J];計算機與網(wǎng)絡;2016年11期
4 向懷坤;;基于交通波理論的道路阻抗函數(shù)模型研究[J];深圳職業(yè)技術(shù)學院學報;2016年01期
5 王楊松;孫潔;;基于離散選擇的動態(tài)堵塞模型研究[J];寧波工程學院學報;2015年04期
6 閻瑩;王曉飛;;災變事件下高速公路管理單元的行程時間研究[J];華南理工大學學報(自然科學版);2015年12期
7 丁宏飛;李演洪;劉博;秦政;;基于BP神經(jīng)網(wǎng)絡與SVM的快速路行程時間組合預測研究[J];計算機應用研究;2016年10期
8 劉躍;;我國高速公路交通流狀態(tài)監(jiān)管與控制技術(shù)研究[J];無線互聯(lián)科技;2015年19期
9 唐少虎;劉小明;陳兆盟;張金金;;基于計算實驗的城市道路行程時間預測與建模[J];自動化學報;2015年08期
10 劉星良;李孟暉;熊子瑜;;基于藍牙的道路行程時間檢測設備設計及測試[J];交通信息與安全;2014年02期
相關(guān)會議論文 前1條
1 張郭艷;宋業(yè)利;;地鐵施工對城市道路通行能力的影響分析[A];規(guī)劃創(chuàng)新:2010中國城市規(guī)劃年會論文集[C];2010年
相關(guān)博士學位論文 前3條
1 張揚;城市路網(wǎng)交通預測模型研究及應用[D];上海交通大學;2009年
2 杜長海;計算智能及其在城市交通誘導系統(tǒng)中的應用研究[D];重慶大學;2009年
3 王曉飛;災變條件下通道路網(wǎng)運營安全管理及應急處置研究[D];同濟大學;2008年
相關(guān)碩士學位論文 前2條
1 魏玉曉;城市道路交通控制與交通誘導協(xié)調(diào)優(yōu)化研究[D];西南交通大學;2010年
2 熊慧;高速公路交通控制與交通誘導技術(shù)的研究[D];西南交通大學;2010年
,本文編號:2150281
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/2150281.html