風(fēng)—浪耦合場(chǎng)橋塔結(jié)構(gòu)動(dòng)力響應(yīng)研究
發(fā)布時(shí)間:2018-06-01 07:10
本文選題:橋塔結(jié)構(gòu) + 風(fēng)-浪耦合。 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:在過(guò)去的10年間,我國(guó)橋梁建設(shè)正逐漸從內(nèi)陸地區(qū)延伸到海岸地區(qū),多個(gè)大跨度跨海大橋,如東海大橋,杭州灣大橋,膠州灣大橋等在此期間建設(shè)完成。對(duì)于跨海大橋,海洋環(huán)境中強(qiáng)風(fēng)、波浪和海流等因素則成為影響跨海大橋設(shè)計(jì),施工和運(yùn)營(yíng)過(guò)程中的重要因素。從塔科馬大橋事故后,風(fēng)對(duì)橋梁作用效應(yīng)得到了深入研究,然而波浪以及更為復(fù)雜的風(fēng)-浪環(huán)境對(duì)橋梁作用效應(yīng)則研究較少,而該問(wèn)題隨著跨海大橋建設(shè)正逐漸深入海洋,其在復(fù)雜海洋環(huán)境下的動(dòng)力響應(yīng)規(guī)律變得亟待解決。本文主要通過(guò)對(duì)橋塔模型進(jìn)行風(fēng)-浪耦合試驗(yàn)和數(shù)值計(jì)算,對(duì)其在復(fù)雜海洋風(fēng)浪環(huán)境下的動(dòng)力響應(yīng)進(jìn)行探索和研究,本文的主要研究?jī)?nèi)容如下:(1)介紹了橋塔模型風(fēng)-浪試驗(yàn)的基本過(guò)程,主要包括有橋塔模型縮尺比的選擇和縮尺準(zhǔn)則的確定;模型的設(shè)計(jì)、加工與安裝;傳感器的選擇和布置;風(fēng)-浪試驗(yàn)的進(jìn)行以及數(shù)據(jù)的采集和分析。(2)模型處的風(fēng)場(chǎng)和波浪場(chǎng)在試驗(yàn)前分別進(jìn)行單獨(dú)標(biāo)定,隨后給出了風(fēng)-浪場(chǎng)的生成方法,并討論了風(fēng)-浪場(chǎng)中波列受到風(fēng)和風(fēng)生浪影響大小,從而對(duì)風(fēng)-浪試驗(yàn)技術(shù)的可行性進(jìn)行了確認(rèn)。(3)試驗(yàn)中對(duì)橋塔彈性模型分別進(jìn)行單風(fēng)、單浪以及風(fēng)-浪耦合作用測(cè)試并得到不同工況下的試驗(yàn)結(jié)果,通過(guò)對(duì)數(shù)據(jù)進(jìn)行處理分析和對(duì)比,研究橋塔結(jié)構(gòu)在單風(fēng)、單浪和風(fēng)-浪聯(lián)合三種不同工況作用下結(jié)構(gòu)位移,加速度,剪力和基底彎矩響應(yīng)規(guī)律。(4)建立了風(fēng)浪耦合作用下橋塔結(jié)構(gòu)的力學(xué)分析模型,通過(guò)數(shù)值模擬分析了橋塔結(jié)構(gòu)在風(fēng)-浪耦合作用下的動(dòng)力響應(yīng),并與試驗(yàn)結(jié)果進(jìn)行對(duì)比。該分析模型中風(fēng)荷載采用抖振理論計(jì)算,波浪荷載采用試驗(yàn)實(shí)測(cè)數(shù)據(jù),其受力分布采用數(shù)值模擬得到。時(shí)程分析中考慮到了結(jié)構(gòu)的非線性,以及波浪作用的瞬態(tài)響應(yīng)等相關(guān)問(wèn)題,其結(jié)果對(duì)試驗(yàn)的準(zhǔn)確性進(jìn)行了驗(yàn)證,并對(duì)試驗(yàn)工況進(jìn)行補(bǔ)充。
[Abstract]:In the past 10 years, the construction of bridges in China has gradually extended from the inland areas to the coastal areas. Many long-span sea bridges, such as the East China Sea Bridge, the Hangzhou Bay Bridge and the Jiaozhou Bay Bridge, have been completed during this period. For a sea crossing bridge, strong winds, waves and currents in the ocean environment have become important factors in the design, construction and operation of the bridge. Since the Tacoma Bridge accident, the effect of wind on the bridge has been deeply studied, but the wave and the more complex wind-wave environment have been less studied on the bridge effect, and this problem is gradually deepening into the ocean with the construction of the bridge across the sea. Its dynamic response law in complex marine environment becomes urgent to be solved. In this paper, the wind wave coupling test and numerical calculation of the bridge tower model are carried out to explore and study the dynamic response of the bridge tower model under the complex ocean wind and wave environment. The main research contents of this paper are as follows: (1) the basic process of wind wave test of tower model is introduced, including the selection of scale ratio of tower model and the determination of scaling criterion, the design, processing and installation of model, the selection and arrangement of sensors, and so on. The wind field and wave field at the model are calibrated separately before the test, and the generating method of the wind wave field is given. The influence of wind and wind waves on wave train in wind-wave field is discussed, and the feasibility of wind-wave test technique is confirmed. Single wave and wind-wave coupling are tested and the test results under different working conditions are obtained. By analyzing and comparing the data, the structural displacement of the tower structure under the action of single wind, single wave and wind-wave combination is studied. Acceleration, shear force and the response law of base bending moment. 4) the mechanics analysis model of tower structure under wind and wave coupling is established. The dynamic response of tower structure under wind wave coupling is analyzed by numerical simulation, and the results are compared with the experimental results. The stroke load of the model is calculated by buffeting theory, the wave load is measured by experimental data, and the force distribution is obtained by numerical simulation. The nonlinear structure and the transient response of waves are considered in the time-history analysis. The results verify the accuracy of the test and supplement the test conditions.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U441.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 連石水;沈小雄;王常民;;大直徑圓筒波浪力計(jì)算方法研究進(jìn)展[J];福建建筑;2006年02期
2 ZHANG Lei;ZHONG DeYu;WU BaoSheng;;Particle inertia effect on sediment dispersion in turbulent open-channel flows[J];Science China(Technological Sciences);2014年10期
3 董志;詹杰民;;基于VOF方法的數(shù)值波浪水槽以及造波、消波方法研究[J];水動(dòng)力學(xué)研究與進(jìn)展A輯;2009年01期
相關(guān)博士學(xué)位論文 前2條
1 陶奇;大跨斜拉橋施工狀態(tài)抖振響應(yīng)現(xiàn)場(chǎng)實(shí)測(cè)研究與分析[D];西南交通大學(xué);2010年
2 左生榮;跨海大橋深水橋墩波浪效應(yīng)研究[D];武漢理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 顧挺鋒;海洋工程水池波浪生成的數(shù)值模擬[D];哈爾濱工程大學(xué);2009年
,本文編號(hào):1963311
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1963311.html
最近更新
教材專著