基于間隙接受理論的無(wú)信號(hào)T型交叉口通行能力研究
本文選題:交通工程 + 無(wú)信號(hào)交叉口 ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:基于間隙接受理論的無(wú)信號(hào)T型交叉口通行能力研究由四個(gè)部分組成:主路車頭時(shí)距和速度特性研究、臨界間隙分布估計(jì)、通行能力模型推導(dǎo)和無(wú)信號(hào)T型交叉口通行能力的VISSIM仿真。主路車頭時(shí)距和速度特性是研究無(wú)信號(hào)T型交叉口通行能力的重要因素。通過(guò)實(shí)測(cè)重慶市銅梁區(qū)三支有代表性的無(wú)信號(hào)T型交叉口主路車速和車頭時(shí)距數(shù)據(jù),分析支路角度對(duì)主路車速、車速離散性的影響,總結(jié)出應(yīng)盡量避免用支路角度非90°和車道過(guò)渡區(qū)段無(wú)信號(hào)T型交叉口對(duì)干路車輛進(jìn)行大量分流,為提高城市路網(wǎng)和無(wú)信號(hào)T型交叉口通行能力提供建議。臨界間隙的分布估計(jì)對(duì)研究無(wú)信號(hào)T型交叉口通行能力有重要意義。考慮主路車流車頭時(shí)距對(duì)臨界間隙的影響,在汽車安全行駛間距模型基礎(chǔ)上,運(yùn)用運(yùn)動(dòng)學(xué)原理分析安全間距條件、通過(guò)時(shí)間條件以及車頭間距、車頭時(shí)距與速度的關(guān)系,給出臨界間隙的表達(dá)公式,提出了臨界間隙服從考慮駕駛員反應(yīng)時(shí)間的泊松分布。通行能力模型推導(dǎo)是在主路車頭時(shí)距和臨界間隙的分布估計(jì)基礎(chǔ)上進(jìn)行的。基于間隙接受理論,用考慮駕駛員反應(yīng)時(shí)間的泊松分布的臨界間隙,分別對(duì)主路車頭時(shí)距服從移位負(fù)指數(shù)分布或M3分布,駕駛員行為一致但不相似或不一致且不相似的四種情況建立無(wú)信號(hào)T型交叉口支路通行能力模型。通過(guò)大量的實(shí)際數(shù)據(jù)標(biāo)定參數(shù),用阻抗系數(shù)計(jì)算整個(gè)交叉口的通行能力。將常用方法、理論方法計(jì)算結(jié)果和實(shí)測(cè)最大通行能力對(duì)比,理論方法與實(shí)測(cè)最大通行能力更接近。用VISSIM軟件對(duì)三支無(wú)信號(hào)T型交叉口的通行能力進(jìn)行仿真,并與常用方法、理論方法計(jì)算結(jié)果和實(shí)測(cè)最大通行能力對(duì)比,發(fā)現(xiàn):三支交叉口的通行能力仿真結(jié)果大于實(shí)測(cè)最大通行能力。實(shí)測(cè)最大通行能力受駕駛員反應(yīng)時(shí)間的影響,駕駛員反應(yīng)時(shí)間受交叉口的幾何特征和主路車流量影響,而仿真結(jié)果未考慮駕駛員反應(yīng)時(shí)間。
[Abstract]:The research on the capacity of unsignalized T-junction based on gap acceptance theory is composed of four parts: the study of the time distance and velocity characteristics of the main road front, the estimation of critical gap distribution, Capacity model derivation and VISSIM simulation of traffic capacity at unsignaled T-type intersections. The characteristics of headway time and speed are important factors to study the capacity of unsignalized T intersection. Based on the measured data of the speed of the main road and the time distance of the front of the three representative unsignaled T-type intersections in Tongliang District of Chongqing, the influence of the angle of the branch road on the speed and the dispersion of the speed of the main road is analyzed. It is concluded that it is necessary to avoid a large number of diversions of trunk road vehicles at non-90 擄branch angle and unsignalized T-type intersections in lane transition section, and provide suggestions for improving the traffic capacity of urban road networks and unsignaled T-type intersections. The estimation of critical gap distribution is of great significance in studying the capacity of unsignalized T-type intersections. Considering the influence of the headway time distance on the critical clearance, the kinematics principle is used to analyze the safety distance condition on the basis of the safe driving distance model, and the relationship between the time condition, the front distance, the headspace and the speed is analyzed by using the kinematics principle. The expression formula of critical clearance is given, and the Poisson distribution considering the reaction time of driver is proposed. The model of capacity is derived on the basis of estimating the distribution of the time distance and critical clearance of the main road. Based on the gap acceptance theory, using the critical clearance of Poisson distribution considering the driver's reaction time, the shift negative exponent distribution or M3 distribution of the front distance of the main road vehicle are obtained, respectively. The traffic capacity model of unsignaled T-type intersections is established in four situations where the driver's behavior is consistent but dissimilar or inconsistent and dissimilar. Through a large number of actual data calibration parameters, the impedance coefficient is used to calculate the capacity of the intersection. By comparing the calculated results with the measured maximum capacity, the theoretical method is closer to the measured maximum capacity. The traffic capacity of three unsignaled T-type intersections is simulated by VISSIM software, and the results are compared with those of common methods, theoretical methods and measured maximum capacity. It is found that the simulation results of the capacity of the three-branch intersection are larger than the measured maximum capacity. The maximum measured capacity is affected by the driver's reaction time, and the driver's reaction time is affected by the geometry characteristics of the intersection and the traffic flow on the main road, but the simulation results do not take the driver's reaction time into account.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文燕;薛鋒;;不同支路角度無(wú)信號(hào)T型交叉口交通流特性研究[J];浙江交通職業(yè)技術(shù)學(xué)院學(xué)報(bào);2016年03期
2 李文燕;薛鋒;;基于安全間距的T型交叉口臨界間隙分析[J];交通運(yùn)輸工程與信息學(xué)報(bào);2016年02期
3 楊林;邢翠芳;趙海冰;;汽車跟馳狀態(tài)下駕駛員反應(yīng)時(shí)間研究[J];計(jì)算技術(shù)與自動(dòng)化;2015年03期
4 馬萬(wàn)經(jīng);葉新晨;廖大彬;白玉;;停車讓行交叉口機(jī)動(dòng)車接受間隙和拒絕間隙分布特征[J];中國(guó)公路學(xué)報(bào);2015年04期
5 楊軫;鄭挺;肖松林;;無(wú)信號(hào)T型交叉口的轉(zhuǎn)彎速度特性及預(yù)測(cè)模型[J];城市道橋與防洪;2015年03期
6 李霖;朱西產(chǎn);馬志雄;;駕駛員在真實(shí)交通危險(xiǎn)工況中的制動(dòng)反應(yīng)時(shí)間[J];汽車工程;2014年10期
7 李淑慶;王志遠(yuǎn);;無(wú)信號(hào)交叉口支路車道通行能力建模與仿真[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
8 邊明遠(yuǎn);;考慮駕駛員個(gè)體特性的汽車安全行駛間距模型[J];中國(guó)機(jī)械工程;2010年12期
9 劉見振;熊輝;王s,
本文編號(hào):1961068
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1961068.html