天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

多層級常規(guī)公交區(qū)域協(xié)調(diào)時刻表編制

發(fā)布時間:2018-05-21 07:08

  本文選題:多層級常規(guī)公交 + 區(qū)域協(xié)調(diào)調(diào)度。 參考:《昆明理工大學(xué)》2015年碩士論文


【摘要】:在多層級常規(guī)公交線網(wǎng)優(yōu)化背景下,為了使公交運營能更好地滿足多樣化公交出行需求,依據(jù)客流時空分布特征,確定合理的調(diào)度形式,建立公交時刻表優(yōu)化模型。層層深入編制出各層級基于客流需求預(yù)測的公交時刻表和適用于多層級公交線網(wǎng)優(yōu)化的區(qū)域協(xié)調(diào)時刻表。首先,分析了影響多層級常規(guī)公交區(qū)域協(xié)調(diào)時刻表編制的主要因素,研究了公交客流的時空分布特征和公交線網(wǎng)結(jié)構(gòu),確定了多層級常規(guī)公交區(qū)域協(xié)調(diào)調(diào)度的目標(biāo)和運營調(diào)度形式。其次,分析了公交客流數(shù)據(jù)的采集和審核方法,分別采用BP神經(jīng)網(wǎng)絡(luò)和RBF神經(jīng)網(wǎng)絡(luò)算法預(yù)測并計算得到公交斷面客流需求。設(shè)計了層級內(nèi)基于客流預(yù)測的單線公交時刻表優(yōu)化流程和約束條件,并構(gòu)建了時刻表方案評價模型。結(jié)合實例得出,基于BP神經(jīng)網(wǎng)絡(luò)和RBF神經(jīng)網(wǎng)絡(luò)預(yù)測算法得到的斷面客流量,編制得到的時刻表方案,相對于優(yōu)化前分別節(jié)省了2.44%和4.80%的運營總成本。第三,依據(jù)多層級常規(guī)公交線網(wǎng)優(yōu)化銜接模式,以各層級公交線路的發(fā)車間隔和車輛調(diào)度形式作為決策變量,從乘客出行時間成本與公交企業(yè)運營收益的角度,考慮乘客舒適性、協(xié)同發(fā)車間隔和企業(yè)運能等方面的約束,建立了多目標(biāo)優(yōu)化模型。綜合分析各種優(yōu)化算法的特點后,采用遺傳算法、粒子群優(yōu)化算法和遺傳粒子群優(yōu)化算法求解模型。依據(jù)實際問題在MATLAB軟件中設(shè)計求解模型的算法步驟。最后,通過實例分析得到,在求解本文構(gòu)建的公交時刻表編制模型過程中,模型目標(biāo)都能夠有效收斂,遺傳粒子群優(yōu)化算法的精度和收斂效率都明顯高于遺傳算法和粒子群優(yōu)化算法。求解結(jié)果方面:遺傳粒子群算法求解得到的多層級常規(guī)公交區(qū)域協(xié)調(diào)時刻表方案,相對于基于RBF公交客流需求預(yù)測編制的時刻表,分別取三種權(quán)重值時的方案總成本分別節(jié)省了3.48%、5.47%和8.42%。驗證了所建模型和優(yōu)化算法的可行性和適用性。實際中,需要根據(jù)給定的運營效益和乘客出行時間成本權(quán)重值選定時刻表優(yōu)化方案。
[Abstract]:Under the background of multi-level conventional bus network optimization, in order to make the bus operation better meet the needs of diversified public transport travel, according to the characteristics of space-time distribution of passenger flow, the reasonable dispatching form is determined, and the optimization model of bus timetable is established. Layer by layer, the bus timetable based on passenger flow demand prediction and the regional coordination schedule for multi-level bus network optimization are worked out. Firstly, the paper analyzes the main factors that affect the compilation of the regional coordination timetable of multi-level conventional public transport, and studies the space-time distribution characteristics of bus passenger flow and the structure of bus network. The objective and operation form of coordinated regional dispatching of multi-level conventional public transport are determined. Secondly, the methods of collecting and checking the bus passenger flow data are analyzed. BP neural network and RBF neural network algorithm are used to predict and calculate the passenger flow demand of public transport section. The optimization flow and constraint conditions of single line bus timetable based on passenger flow prediction are designed and the evaluation model of schedule scheme is constructed. Combined with an example, it is concluded that the total operating cost is 2.44% and 4.80% lower than that before optimization, respectively, based on BP neural network and RBF neural network prediction algorithm. Thirdly, according to the optimal connection mode of multi-level conventional bus network, taking the departure interval and vehicle dispatching form of each level of bus lines as decision variables, from the point of view of passenger travel time cost and public transport enterprise operating income. Considering the constraints of passenger comfort, cooperative departure interval and enterprise capacity, a multi-objective optimization model is established. After analyzing the characteristics of various optimization algorithms, genetic algorithm, particle swarm optimization algorithm and genetic particle swarm optimization algorithm are used to solve the model. The algorithm of solving the model is designed in MATLAB software according to the practical problem. Finally, through the analysis of an example, it is concluded that the model can converge effectively in the course of solving the model of the bus timetable constructed in this paper. The precision and convergence efficiency of genetic particle swarm optimization are obviously higher than those of genetic algorithm and particle swarm optimization. The solution results are as follows: genetic Particle Swarm Optimization algorithm (GPSO) is used to solve the multi-level bus coordination schedule, which is relative to the schedule based on RBF bus passenger demand prediction. The total cost of the scheme was saved by 3.48% 5.47% and 8.42% respectively. The feasibility and applicability of the proposed model and optimization algorithm are verified. In practice, it is necessary to select the timetable optimization scheme according to the given operation benefit and the weight value of passenger travel time cost.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U491.17

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉翠;陳洪仁;;公交線路客流OD矩陣推算方法研究[J];城市交通;2007年04期

2 蔣光震;何顯慈;;公共交通線路組合調(diào)度模型[J];系統(tǒng)工程;1985年02期

3 楊曉光,周雪梅,臧華;基于ITS環(huán)境的公共汽車交通換乘時間最短調(diào)度問題研究[J];系統(tǒng)工程;2003年02期

4 童剛;遺傳算法在公交調(diào)度中的應(yīng)用研究[J];計算機工程;2005年13期

5 巫威眺;靳文舟;魏明;孫德強;;配合區(qū)間車的單線公交組合調(diào)度模型[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2012年11期

6 柏海艦;董瑞娟;張敏;陳一鍇;;基于同步多樣性的公交時刻優(yōu)化方法[J];交通運輸工程學(xué)報;2013年03期

7 孫傳姣;周偉;王元慶;;快速公交車輛調(diào)度組合及發(fā)車間隔優(yōu)化研究[J];交通運輸系統(tǒng)工程與信息;2008年05期

8 宋瑞;何世偉;楊永凱;楊海;羅康錦;;公交時刻表設(shè)計與車輛運用綜合優(yōu)化模型[J];中國公路學(xué)報;2006年03期

9 石琴;覃運梅;黃志鵬;;公交區(qū)域調(diào)度的最大同步換乘模型[J];中國公路學(xué)報;2007年06期

10 陳芳;城市公交調(diào)度模型研究[J];中南公路工程;2005年02期

相關(guān)碩士學(xué)位論文 前4條

1 梁媛媛;公共交通行車計劃一體化編制方法研究[D];北京交通大學(xué);2009年

2 蘇彩艷;基于運行時間可靠性的公交線網(wǎng)協(xié)同調(diào)度問題研究[D];中南大學(xué);2012年

3 黃悅;基于公交IC卡信息的大站快車調(diào)度方法研究[D];西南交通大學(xué);2012年

4 鄒繼賢;常規(guī)公交多層次網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化理論研究[D];長安大學(xué);2013年

,

本文編號:1918239

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1918239.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶51df4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com