鋼-混凝土組合梁溫度效應(yīng)的解析解
發(fā)布時間:2018-04-24 20:25
本文選題:橋梁工程 + 鋼-混凝土組合梁 ; 參考:《交通運輸工程學(xué)報》2017年04期
【摘要】:針對考慮和不考慮界面滑移2種情況,在任意溫度分布作用下,推導(dǎo)了鋼-混凝土組合梁界面剪力、相對滑移和溫度應(yīng)力理論計算公式,采用有限元模擬對考慮界面滑移的公式進(jìn)行了驗證,并在鋼-混凝土溫差模式(模式1)、《公路橋涵設(shè)計通用規(guī)范》(JTG D60—2015)溫差模式(模式2)和英國規(guī)范BS5400溫差模式(模式3)下,對比了溫度效應(yīng)的計算結(jié)果。分析結(jié)果表明:采用考慮界面滑移的剪力理論公式計算出的組合梁界面剪力分布與有限元計算結(jié)果規(guī)律一致,3種模式下剪力最大偏差分別為1.15%、2.65%和3.41%;組合梁界面剪力服從雙曲余弦函數(shù)分布,界面滑移服從雙曲正弦函數(shù)分布;不考慮滑移與考慮滑移計算得到的界面最大剪力基本相等,最大偏差僅為1.22%;組合梁跨中溫度應(yīng)力計算值的最大偏差小于1%,但組合梁端部溫度應(yīng)力計算值偏差較大,模式3溫差為20℃時,考慮滑移時的混凝土底部溫度拉應(yīng)力為不考慮滑移時的1.9倍;組合梁的界面溫度效應(yīng)與溫差成線性關(guān)系,斜率與溫度分布模式有關(guān),模式1的界面剪力、界面剪應(yīng)力和界面滑移的變化速率最大,分別為9.138kN·℃-1、0.067MPa·℃-1和5.263×10-3 mm·℃-1;溫差為30℃時,模式1的界面剪力、界面剪應(yīng)力和界面滑移變化速率均為模式3的3倍以上,因此,不考慮鋼梁溫度梯度會使組合梁界面剪力、相對滑移與溫度應(yīng)力計算結(jié)果產(chǎn)生偏差,且偏差會隨溫差的增大而增大。
[Abstract]:Considering and disregarding the interface slip, the theoretical formulas of shear force, relative slip and temperature stress of steel-concrete composite beams are derived under arbitrary temperature distribution. The formula considering interface slippage is verified by finite element simulation, and the temperature difference model (mode 2) and the BS5400 temperature difference mode (mode 3) of the British Code for the Design of Highway Bridges and culverts (Mode 1, < Highway Bridge and culvert Design General Code >) have been verified by finite element simulation. The calculated results of temperature effect are compared. The results show that the maximum deviation of shear force is 1.152.65% and 3.41 respectively under the three modes: the shear distribution of composite beam calculated by the shear theory formula considering interface slip is consistent with the result of finite element method. The interfacial shear of composite beam is equal to 1.15% and 3.41%, respectively, and the maximum deviation of shear force is 1.15% and 3.41%, respectively. The force suit is distributed from the hyperbolic cosine function, The interface slip clothing is distributed from the hyperbolic sinusoidal function, and the maximum shear force of the interface calculated without considering the slip is basically equal to that obtained by the calculation of the slip. The maximum deviation is only 1.22 and the maximum deviation of the calculation value of the temperature stress in the span of the composite beam is less than 1, but the deviation of the calculation value of the temperature stress at the end of the composite beam is large, when the temperature difference of mode 3 is 20 鈩,
本文編號:1798109
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1798109.html
教材專著