索力振動(dòng)法測(cè)量的試驗(yàn)研究
本文關(guān)鍵詞:索力振動(dòng)法測(cè)量的試驗(yàn)研究 出處:《哈爾濱工業(yè)大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 索力測(cè)量 振動(dòng)法 數(shù)值模擬 試驗(yàn)研究
【摘要】:索力是索體系橋梁在施工階段進(jìn)行施工監(jiān)控的重要指標(biāo),也是橋梁運(yùn)營(yíng)階段進(jìn)行健康評(píng)估的重要指標(biāo)。目前的索力測(cè)試方法中使用比較普遍的是振動(dòng)法。利用振動(dòng)法對(duì)索力進(jìn)行計(jì)算的公式中,張緊弦公式忽略了索的剛度的影響,因而只對(duì)長(zhǎng)索能保持較高的精度。鉸接梁公式考慮了抗彎剛度的影響,且能夠顯式地推導(dǎo)出來(lái)解析解。兩端固結(jié)邊界條件下的索,一些學(xué)者通過(guò)引入有效計(jì)算長(zhǎng)度,來(lái)使其可以簡(jiǎn)化為鉸接梁。另一些學(xué)者通過(guò)擬合近似公式來(lái)求解。通過(guò)對(duì)兩種思路的文獻(xiàn)進(jìn)行歸納總結(jié),本文認(rèn)為,拉索的索力和頻率平方之間存在著線(xiàn)性關(guān)系。但是這種觀(guān)點(diǎn)未能通過(guò)數(shù)學(xué)推導(dǎo)得到證明,因此本文試圖利用試驗(yàn)的手段,通過(guò)數(shù)據(jù)對(duì)其進(jìn)行檢驗(yàn)。具體工作包括以下幾點(diǎn):(1)大量查閱利用振動(dòng)法對(duì)索力進(jìn)行測(cè)量的有關(guān)文獻(xiàn),對(duì)以前學(xué)者的研究工作進(jìn)行整理分析,提出拉索索力和頻率平方之間的線(xiàn)性關(guān)系,并提出基于等代鉸接梁模型的頻階識(shí)別方法。并對(duì)文獻(xiàn)中影響振動(dòng)法索力測(cè)量精度的因素進(jìn)行分析,在此基礎(chǔ)上設(shè)計(jì)試驗(yàn)方案,從而減小這些因素的影響。(2)建立了不同長(zhǎng)度和不同邊界條件下拉索的有限元模型,得到不同索力下的各階頻率數(shù)據(jù)。利用鉸接梁公式對(duì)兩端固結(jié)和一鉸一固邊界條件下的頻率數(shù)據(jù)進(jìn)行計(jì)算。發(fā)現(xiàn)對(duì)于長(zhǎng)、中、短索,利用線(xiàn)性模型進(jìn)行索力計(jì)算均能保持很高的精度。并將計(jì)算結(jié)果和文獻(xiàn)中常用的索力計(jì)算公式進(jìn)行精度對(duì)比。(3)在恒溫實(shí)驗(yàn)室下對(duì)大量拉索進(jìn)行張拉試驗(yàn),并利用試驗(yàn)數(shù)據(jù)對(duì)本文理論進(jìn)行驗(yàn)證。通過(guò)對(duì)試驗(yàn)索的統(tǒng)計(jì)分析,發(fā)現(xiàn)在恒溫實(shí)驗(yàn)室條件下,可以利用線(xiàn)性模型得出較高的精度。(4)利用南盤(pán)江橋索力試驗(yàn)時(shí)的三個(gè)較短吊桿的數(shù)據(jù)對(duì)吊桿力進(jìn)行計(jì)算,驗(yàn)證在實(shí)際工程中線(xiàn)性模型的精度,并給出了本文方法在實(shí)際工程中的使用流程。
[Abstract]:Cable force is an important index to monitor the construction of cable-system bridges in the construction stage. It is also an important index of health assessment in bridge operation stage. The vibration method is widely used in the current cable force test method, and the formula for calculating cable force by vibration method. The tensioning string formula neglects the influence of the cable stiffness, so it only keeps a higher precision for the long cable energy, and the flexural stiffness is considered in the hinge beam formula. And the analytical solution can be derived explicitly. Some scholars calculate the length of the cable under the boundary condition by introducing the effective method. In order to simplify it to hinged beam, some other scholars by fitting approximate formula to solve. Through the two ideas of literature summarized, this paper thinks. There is a linear relationship between the cable force and the square of frequency, but this view can not be proved by mathematical derivation, so this paper tries to use the means of experiment. The specific work includes the following points: 1) to consult a large number of vibration method to measure the cable force of the relevant literature, to sort out and analyze the previous research work of scholars. The linear relationship between cable force and frequency square is presented, and the frequency order identification method based on the equivalent hinge beam model is proposed. The factors influencing the precision of vibration Burkina Faso force measurement are analyzed. On this basis, the experimental scheme is designed to reduce the influence of these factors. (2) the finite element model of the cables with different lengths and boundary conditions is established. The frequency data of each order under different cable forces are obtained. The frequency data under the condition of two ends consolidation and one hinge and one fixed boundary are calculated by using the formula of hinged beam. It is found that for long, medium and short cables. The accuracy of cable force calculation using linear model is very high, and the accuracy of the calculation results is compared with the commonly used cable force calculation formula in literature. 3) A large number of cable tension tests are carried out in the constant temperature laboratory. The experimental data are used to verify the theory of this paper. Through the statistical analysis of the test cable, it is found that under the condition of constant temperature laboratory. We can use the linear model to get a higher precision.) using the data of three shorter suspenders in the test of cable force of Nanpanjiang Bridge, we can calculate the force of the suspender, and verify the accuracy of the linear model in the actual engineering. The application flow of this method in practical engineering is also given.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U446
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣應(yīng)軍;張毅;劉海鵬;王琪;;基于振動(dòng)法設(shè)計(jì)的水泥穩(wěn)定碎石施工質(zhì)量控制[J];筑路機(jī)械與施工機(jī)械化;2008年10期
2 ;用振動(dòng)法測(cè)量齒輪機(jī)床的運(yùn)動(dòng)精度[J];上海機(jī)械;1962年11期
3 劉志軍,黨志杰,羅元文,汪鳳泉;振動(dòng)法測(cè)定纜索張力的研究[J];橋梁建設(shè);2002年02期
4 張靜;;水泥穩(wěn)定碎石振動(dòng)法配合比設(shè)計(jì)與施工[J];天津建設(shè)科技;2010年03期
5 王建民;;基于振動(dòng)法的水泥穩(wěn)定碎石設(shè)計(jì)[J];交通世界(建養(yǎng).機(jī)械);2013年12期
6 馬永剛;方劍;;水泥穩(wěn)定碎石振動(dòng)法設(shè)計(jì)及施工技術(shù)[J];公路;2014年03期
7 張濤;朱天猛;;振動(dòng)法在水泥穩(wěn)定碎石基層配合比設(shè)計(jì)中的應(yīng)用[J];筑路機(jī)械與施工機(jī)械化;2010年05期
8 邵長(zhǎng)江,喻梅;振動(dòng)法測(cè)斜拉索索力[J];四川建筑;2003年01期
9 許海云;武啟誠(chéng);謝熠;周衛(wèi)峰;;振動(dòng)法設(shè)計(jì)水泥穩(wěn)定碎石在申嘉湖高速公路的應(yīng)用[J];上海公路;2007年04期
10 陳曉剛;褚付克;;振動(dòng)法設(shè)計(jì)的水泥粉煤灰穩(wěn)定碎石基層應(yīng)用研究[J];公路與汽運(yùn);2010年06期
相關(guān)會(huì)議論文 前1條
1 陳楠;韓玉林;;結(jié)構(gòu)健康監(jiān)測(cè)中基于振動(dòng)法的拉索索力測(cè)試方法綜述[A];2008年江蘇省計(jì)量測(cè)試學(xué)術(shù)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 山西省公路局呂梁分局 呂梁宇星公路勘察設(shè)計(jì)院 劉琦兵;分析與研究振動(dòng)法設(shè)計(jì)水泥穩(wěn)定碎石基層[N];山西科技報(bào);2009年
相關(guān)碩士學(xué)位論文 前4條
1 肖會(huì)闖;索力振動(dòng)法測(cè)量的試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 茍靜波;基于振動(dòng)法的水泥穩(wěn)定碎石級(jí)配設(shè)計(jì)及路用性能研究[D];長(zhǎng)安大學(xué);2013年
3 李峰;基于振動(dòng)法的梁拱橋組合橋吊桿張力測(cè)試研究[D];西南交通大學(xué);2011年
4 王建飛;拱橋吊桿索力的振動(dòng)法測(cè)量[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):1437341
本文鏈接:http://www.sikaile.net/kejilunwen/daoluqiaoliang/1437341.html