半潛式平臺天車主動升沉補償系統(tǒng)研究
本文選題:半潛式平臺 + 被動補償; 參考:《中國石油大學(xué)(華東)》2014年碩士論文
【摘要】:海洋鉆井時,半潛式平臺在波浪的作用下將產(chǎn)生周期性的升沉運動,引起大鉤上下往復(fù)運動,導(dǎo)致井底鉆壓波動,使鉆頭脫離井底或沖擊巖層,影響鉆進效率,造成操作安全隱患。天車型升沉補償系統(tǒng)具有承受載荷大、補償能力強、補償效果好等優(yōu)點,可以有效補償平臺升沉,滿足海洋鉆井需求。本文以海洋石油981為研究對象,對其進行頻域響應(yīng)和時域響應(yīng)分析,得到了平臺在作業(yè)允許海況下的瞬態(tài)響應(yīng),從而獲得升沉補償系統(tǒng)的最大升沉幅度和速度。根據(jù)鉆井手冊及相關(guān)鉆井設(shè)計規(guī)范,采用復(fù)合鉆桿柱設(shè)計方法對海洋鉆井進行鉆柱設(shè)計,得到了不同井深下鉆柱的重量、鉆柱等效剛度系數(shù)以及鉆柱允許的最大升沉。半潛式平臺動態(tài)響應(yīng)分析和海洋鉆井鉆柱設(shè)計為后續(xù)升沉補償系統(tǒng)設(shè)計提供了重要的依據(jù)。文中先進行天車被動補償系統(tǒng)研究,設(shè)計被動升沉補償系統(tǒng)主體結(jié)構(gòu),在結(jié)構(gòu)設(shè)計的基礎(chǔ)上,利用氣液彈簧的原理進行被動補償液壓設(shè)計。經(jīng)過理論推導(dǎo),建立系統(tǒng)靜態(tài)分析數(shù)學(xué)模型,通過模型得到了液壓缸作用力與天車在滑軌中的關(guān)系曲線;采用分離法,對各個物體進行受力分析,分別列出動力學(xué)方程,經(jīng)過換算和組裝,建立天車運動方程。根據(jù)被動補償液壓設(shè)計和理論分析,對直立雙缸和傾斜雙缸分別建立液壓仿真模型,并進行液壓仿真,得出傾斜雙缸補償效果優(yōu)于直立雙缸。在傾斜液壓仿真模型基礎(chǔ)上,進行系統(tǒng)參數(shù)分析,得出儲氣罐體積、鉆井井深、平臺升沉幅度、平臺升沉周期以及液壓缸夾角對天車被動升沉補償效果的影響規(guī)律。在被動升沉補償結(jié)構(gòu)設(shè)計的基礎(chǔ)上,引入兩直立主動補償缸結(jié)構(gòu),共同構(gòu)成了天車主動升沉補償系統(tǒng)結(jié)構(gòu)。依據(jù)系統(tǒng)結(jié)構(gòu)進行液壓系統(tǒng)設(shè)計,設(shè)計采用變量泵與節(jié)流閥共同控制的方法,節(jié)流閥控制變量泵出口壓力,變量閥控制出口流量,兩者相輔相成節(jié)能高效地完成補償功能。對儲氣罐設(shè)計了壓力調(diào)節(jié)系統(tǒng),通過調(diào)節(jié)儲氣罐壓力可以動態(tài)的改變液壓缸對天車的作用力,進而動態(tài)調(diào)節(jié)系統(tǒng)補償狀態(tài)。在主動補償結(jié)構(gòu)設(shè)計和液壓設(shè)計基礎(chǔ)上,采用動力學(xué)方法,建立天車運動方程,為系統(tǒng)主動補償提供理論依據(jù)。搭建主動補償液壓仿真模型,得到天車位移隨時間變化曲線,并分析天車的補償效果。鑒于仿真軟件未能考慮液壓滯后效應(yīng),文中人為加入滯后角度并進行仿真,得出了滯后角度與天車補償效果的關(guān)系。在液壓仿真模型基礎(chǔ)上添加能耗計算模塊,分析系統(tǒng)能耗,并對能耗進行參數(shù)影響分析,得出了各參數(shù)對能耗的影響規(guī)律,為系統(tǒng)節(jié)能提供重要依據(jù)。對天車主動補償系統(tǒng)關(guān)鍵構(gòu)件如主動補償缸、被動補償缸、儲氣罐,油管等進行詳細(xì)設(shè)計,設(shè)計其尺寸和性能參數(shù),并對其進行相應(yīng)校核與優(yōu)化,使其滿足使用要求。
[Abstract]:In offshore drilling, the semi-submersible platform will produce periodic heave motion under the action of waves, which will cause the large hook to move up and down, which will lead to the bottom hole pressure fluctuation, which will make the drill bit break off the bottom hole or impact the rock formation, which will affect the drilling efficiency. Cause hidden trouble of operation safety. The heave compensation system has the advantages of large load, strong compensation ability and good compensation effect. It can effectively compensate the platform heave and meet the requirements of offshore drilling. In this paper, the frequency domain response and time domain response of the offshore oil 981 are analyzed, and the transient response of the platform under the operational conditions is obtained, thus the maximum heave amplitude and velocity of the heave compensation system are obtained. According to the drilling manual and relevant drilling design code, the design method of compound drill string is used to design the drill string in offshore drilling. The weight of drill string under different well depth, the equivalent stiffness coefficient of drill string and the maximum allowable heave of drill string are obtained. The dynamic response analysis of semi-submersible platform and the design of drilling string provide important basis for the subsequent design of heave compensation system. In this paper, the passive compensation system of crane is studied firstly, and the main structure of the passive heave compensation system is designed. On the basis of the structural design, the principle of gas-liquid spring is used to design the passive compensation hydraulic system. Through theoretical derivation, the mathematical model of system static analysis is established, and the relationship curve between the cylinder force and the crane in the slide rail is obtained by the model, and the force analysis of each object is carried out by using the separation method, and the dynamic equations are listed respectively. After conversion and assembly, the motion equation of crane is established. According to the hydraulic design and theoretical analysis of passive compensation, the hydraulic simulation models of vertical double cylinder and inclined double cylinder are established, and the hydraulic simulation results show that the compensation effect of inclined double cylinder is better than that of vertical double cylinder. Based on the inclined hydraulic simulation model, the system parameters are analyzed, and the effects of tank volume, drilling well depth, platform heave amplitude, platform heave cycle and hydraulic cylinder angle on the compensation effect of passive heave compensation are obtained. Based on the design of passive heave compensation structure, two vertical active compensation cylinder structures are introduced, which constitute the structure of crane active heave compensation system. The hydraulic system is designed according to the system structure. The variable pump and throttle valve are used to control the outlet pressure of the variable pump and the variable valve to control the outlet flow. The pressure regulating system is designed for the gas storage tank. By adjusting the pressure of the gas storage tank, the force of the hydraulic cylinder on the crane can be changed dynamically, and then the compensation state of the system can be dynamically adjusted. On the basis of active compensation structure design and hydraulic design, the dynamic method is used to establish the motion equation of the crane, which provides the theoretical basis for the active compensation of the system. The hydraulic simulation model of active compensation is built to get the curve of crane displacement with time, and the compensation effect of crane is analyzed. In view of the failure of the simulation software to consider the hydraulic lag effect, the relationship between the lag angle and the compensation effect of the crane is obtained by adding the lag angle to the simulation. Based on the hydraulic simulation model, the energy consumption calculation module is added to analyze the energy consumption of the system, and the influence of the parameters on the energy consumption is analyzed. The influence law of the parameters on the energy consumption is obtained, which provides an important basis for the energy saving of the system. The key components of the crane active compensation system, such as active compensation cylinder, passive compensation cylinder, gas storage tank and tubing, are designed in detail, their dimensions and performance parameters are designed, and the corresponding checking and optimization are carried out to make them meet the requirements of application.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U674.381
【相似文獻】
相關(guān)期刊論文 前10條
1 張超;王慶豐;王海波;;水下拖曳升沉補償負(fù)載模擬加載系統(tǒng)的設(shè)計[J];機床與液壓;2008年12期
2 王海波;王慶豐;;拖體被動升沉補償系統(tǒng)非線性建模及仿真[J];浙江大學(xué)學(xué)報(工學(xué)版);2008年09期
3 朱曉環(huán);孫洪峰;段夢蘭;周帆;李振林;;一種復(fù)合型深水安裝升沉補償系統(tǒng)的設(shè)計[J];液壓與氣動;2012年02期
4 湯曉燕;劉少軍;云忠;;基于虛擬樣機技術(shù)的深海采礦主動式升沉補償系統(tǒng)設(shè)計[J];北京工業(yè)大學(xué)學(xué)報;2008年05期
5 徐寶富;羊衍貴;諶志新;王云杰;;基盤升沉補償系統(tǒng)的設(shè)計和分析[J];中國工程機械學(xué)報;2012年03期
6 肖體兵;吳百海;龍建軍;;深海作業(yè)裝置主動型升沉補償系統(tǒng)控制器的研究[J];液壓與氣動;2008年04期
7 張彥廷;渠迎鋒;劉振東;馬江濤;;天車升沉補償系統(tǒng)搖擺裝置的設(shè)計[J];浙江大學(xué)學(xué)報(工學(xué)版);2012年12期
8 李明婕;段夢蘭;葉茂;任曉瑤;秦文婷;呂博;;深水絞車半主動升沉補償系統(tǒng)設(shè)計及仿真[J];液壓與氣動;2014年02期
9 吳百海,肖體兵,龍建軍,毛寧;深海采礦裝置的自動升沉補償系統(tǒng)的模擬研究[J];機械工程學(xué)報;2003年07期
10 鄧智勇;高劍;謝金輝;高磊;唐國元;黃道敏;;基于節(jié)流方法的被動式吊機升沉補償系統(tǒng)設(shè)計[J];船海工程;2014年04期
相關(guān)會議論文 前5條
1 肖體兵;吳百海;;輕載主動型升沉補償模擬試驗系統(tǒng)的仿真和實驗研究[A];中國海洋學(xué)會2005年學(xué)術(shù)年會論文匯編[C];2005年
2 任克忍;沈大春;王定亞;肖銳;李鵬;南樹歧;;海洋鉆井升沉補償系統(tǒng)技術(shù)分析[A];2009年石油裝備學(xué)術(shù)研討會論文專輯[C];2009年
3 姜浩;劉衍聰;張彥廷;劉振東;;鉆柱升沉補償試驗臺控制系統(tǒng)設(shè)計[A];2011年石油裝備學(xué)術(shù)研討會論文專輯[C];2011年
4 肖體兵;;深海采礦揚礦管重載半主動型升沉補償系統(tǒng)控制器的研究[A];第二十七屆中國控制會議論文集[C];2008年
5 吳百海;鄒大鵬;冶占武;陳飛燕;肖奇軍;;深海采礦長行程升沉補償油缸的同步檢測與控制[A];機床與液壓學(xué)術(shù)研討會論文集[C];2004年
相關(guān)重要報紙文章 前1條
1 澳思;OSBV公司將為Edda住宿船建過道[N];中國船舶報;2010年
相關(guān)博士學(xué)位論文 前5條
1 肖體兵;深海采礦裝置智能升沉補償系統(tǒng)的研究[D];廣東工業(yè)大學(xué);2004年
2 曾智剛;波浪運動升沉補償液壓平臺關(guān)鍵問題試驗研究[D];華南理工大學(xué);2010年
3 王海波;水下拖曳升沉補償液壓系統(tǒng)及其控制研究[D];浙江大學(xué);2009年
4 姜浩;海洋浮式鉆井平臺鉆柱升沉補償系統(tǒng)研究[D];中國石油大學(xué)(華東);2013年
5 李流軍;動力吸振式深海采礦主動升沉補償系統(tǒng)設(shè)計及控制研究[D];中南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 黃志鵬;大噸位沉船打撈鏈?zhǔn)酵教嵘脚_設(shè)計[D];大連海事大學(xué);2015年
2 賀子奇;海上作業(yè)絞車式主動升沉補償系統(tǒng)設(shè)計與仿真[D];大連理工大學(xué);2015年
3 董航;船用起重機油缸式主動升沉補償系統(tǒng)研究[D];大連理工大學(xué);2015年
4 韓雪;沉船提升被動型液壓升沉補償系統(tǒng)設(shè)計與仿真研究[D];大連海事大學(xué);2015年
5 賈俊梁;3000米深水勘察船鉆機系統(tǒng)研究[D];西安石油大學(xué);2015年
6 陳武雄;復(fù)合缸游車大鉤升沉補償試驗臺電控系統(tǒng)的設(shè)計及實驗研究[D];中國石油大學(xué)(華東);2014年
7 王龍;基于恒張力原理的絞車升沉補償系統(tǒng)研究[D];中國地質(zhì)大學(xué);2015年
8 李俊;半潛式平臺天車主動升沉補償系統(tǒng)研究[D];中國石油大學(xué)(華東);2014年
9 白鹿;鉆柱液壓升沉補償系統(tǒng)設(shè)計研究[D];中國石油大學(xué);2009年
10 武光斌;復(fù)合缸式鉆井升沉補償系統(tǒng)的設(shè)計研究[D];中國石油大學(xué);2010年
,本文編號:2073660
本文鏈接:http://www.sikaile.net/kejilunwen/chuanbolw/2073660.html