天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

小分子化合物,電化學活性菌及納米材料間的電子傳遞機制及應(yīng)用拓展

發(fā)布時間:2018-08-19 12:47
【摘要】:由于全球的能源危機和污染控制,可再生潔凈能源是人類未來可持續(xù)發(fā)展的最佳選擇。因此本論文對電化學活性菌(EAB)和可見光驅(qū)動的光催化光解水制氫體系進行研究。EAB是環(huán)境中普遍存在的,并在生物地球化學,環(huán)境修復(fù)以及生物能源產(chǎn)電等領(lǐng)域起到重要作用。進二十年來,對于EAB的胞外電子傳遞(EET)機制方面有大量研究,到目前為止,普遍認為EAB將胞外電子傳遞到胞外的固體電子受體有三種可能的途徑:(a)直接接觸的電子傳遞;(b)胞外可溶性電子媒介;(c)導(dǎo)電納米線或者導(dǎo)電鞭毛。通過對于EAB胞外電子傳遞機制的研究和闡明,對于檢測和定量EAB的胞外電子轉(zhuǎn)移能力有明確的指導(dǎo)作用,并對增強EAB在環(huán)境領(lǐng)域中的應(yīng)用提供理論基礎(chǔ)。本論文對EAB、納米材料以及小分子化合物間的電子和能量傳遞過程,開展了一系列工作,主要研究內(nèi)容和結(jié)果如下。 1.通過對EAB與可溶性媒介類熒光探針核黃素小分子之間的電子轉(zhuǎn)移的研究,建立了一種快速、原位和高靈敏的熒光方法來檢測EAB,并量化EAB的胞外電子傳遞能力。此方法被成功用于定量兩株模式EAB的平均胞外電子傳遞能力(Shewanella oneidensis MR-1,1.32±0.04fA; Geobacter sulfurreducens DL-1,9.08±0.23fA)。此方法也通過定量并比較Shewanella野生型和突變株的平均胞外電子傳遞能力,從分子生物學水平上快速的鑒定了與胞外電子傳遞相關(guān)的基因。 2.碳材料被廣泛的用于生物電化學體系中的電極材料,但是在長期連續(xù)的運行過程中,微生物趨向于粘附在碳材料電極表面上并形成厚并且致密的生物膜,這將限制電子和營養(yǎng)物在微生物-電極界面的傳質(zhì)。通過采用修飾W03納米棒的碳紙電極作為微生物燃料電池的陽極,Shewanella oneidensis MR-1作為陽極接種產(chǎn)電微生物,這種新型的電極材料能夠完全抑制Shewanella oneidensis MR-1生物膜的生長,并且展現(xiàn)出優(yōu)越的電化學性能和對電子媒介核黃素的強的電化學響應(yīng)。這兩個因素結(jié)合起來能促成這種新型電極材料對于懸浮的Shewanella oneidensis MR-1胞外的電子的連續(xù)穩(wěn)定的攝取。這導(dǎo)致在長期運行過程當中以修飾W03納米捧的碳紙電極為陽極的微生物燃料電池比純碳紙電極以及修飾W03納米顆粒的碳紙電極的微生物燃料電池展現(xiàn)出更穩(wěn)定的性能。此項工作表明W03納米棒在實際生物電化學領(lǐng)域的新型抗生物污染材料中有廣泛的應(yīng)用前景。 3.有研究表明通過自組裝方法在金電極上修飾羧基終端的烷硫醇單分子層能夠有效的提高EAB與電極表面的電子轉(zhuǎn)移,但是這種增強機制仍然很難弄清楚。本工作通過自組裝方式在真空濺射金電極表面修飾巰基乙酸與巰基乙氨單分子層,獲得Au-COOH以及Au-NH2。并在微生物電解池(MEC)體系里以Geobacter sulfurreducens DL-1為陽極產(chǎn)電微生物,分別以Au-COOH, Au-NH2以及Au作為的陽極對電解池的性能進行比較。此外,三種電極的電化學性能和電極表面與細菌之間的相互作用也進行了研究。結(jié)果表明,Au-NH2具有最優(yōu)越的電化學性能,MEC體系里,Au-COOH都產(chǎn)生了比Au高的電流密度。Au-NH2表Au-COOH面形成的生物膜比Au表面的更稠密,然而表面形成的生物膜比Au表Au-NH2面的更厚。這些都表明直接電子傳遞在這個過程中起到的重要作用。這項工作表明羧基和氨基官能團能夠通過加速EAB與電極之間的直接EET以提升電極的性能。4.光解水制氫氣這種潔凈能源的需求推動了高效的光催化系統(tǒng)的快速發(fā)展。 本工作報道了一種低成本,易制備,環(huán)境友好的可見光催化的光解水制氫系統(tǒng)。此系統(tǒng)包括氧雜蒽染料和無機Ni(Ⅱ)或者Co(Ⅱ)鹽的三乙醇胺水溶液。通過加入2-巰基乙醇作為表面活性劑能有效提高系統(tǒng)制氫的效率和穩(wěn)定性。光催化產(chǎn)氫的結(jié)果,透射電鏡以及電催化產(chǎn)氫反應(yīng)測試結(jié)果顯示此體系的產(chǎn)氫催化中心是原位形成的Ni系或者Co系的納米顆粒。動態(tài)光散射結(jié)果表明巰基乙醇增強產(chǎn)氫的機制是通過穩(wěn)定非均相的Ni系或者Co系納米顆粒催化劑。
[Abstract]:Because of the global energy crisis and pollution control, renewable clean energy is the best choice for the sustainable development of mankind in the future. Therefore, this paper studies electrochemical active bacteria (EAB) and visible light-driven photocatalytic photolysis system for hydrogen production from water. EAB is ubiquitous in the environment, and exists in biogeochemistry, environmental remediation and bioenergy. Extracellular electron transfer (EET) mechanism of EAB has been studied extensively in the past 20 years. Up to now, it is generally believed that there are three possible ways for EAB to transfer extracellular electrons to extracellular solid electron receptors: (a) direct contact electron transfer; (b) extracellular soluble electron mediators; (c) conduction. Electron nanowires or conductive flagellates. Through the study and elucidation of the mechanism of extracellular electron transfer of EAB, it has a clear guiding role for the detection and quantification of extracellular electron transfer ability of EAB, and provides a theoretical basis for enhancing the application of EAB in the field of environment. This paper will focus on the electrons and energy between EAB, nanomaterials and small molecular compounds. A series of works have been carried out. The main research contents and results are as follows.
1. A rapid, in situ and highly sensitive fluorescence method was developed to detect EAB and quantify the extracellular electron transfer capacity of EAB. This method was successfully used to quantify the average extracellular electron transfer capacity (Shewanella oneid) of two model EABs. By quantifying and comparing the average extracellular electron transport capacity of wild-type and mutant Shewanella strains, the genes related to extracellular electron transport were identified rapidly from the molecular biological level.
2. Carbon materials are widely used as electrode materials in bioelectrochemical systems. However, during long-term continuous operation, microorganisms tend to adhere to the surface of carbon electrode and form thick and dense biofilm, which will limit the mass transfer of electrons and nutrients at the microbial-electrode interface. Carbon modified W03 nanorods are used. Shewanella oneidensis MR-1 as the anode of microbial fuel cell and Shewanella oneidensis MR-1 as the anode inoculated with electricity-producing microorganisms, this new electrode material can completely inhibit the growth of Shewanella oneidensis MR-1 biofilm, and exhibit excellent electrochemical performance and strong electrochemical response to electron-mediated riboflavin. The combination of elements contributes to the continuous and stable uptake of electrons from suspended Schwanella oneidensis MR-1 cells by this novel electrode material, which results in the long-term operation of microbial fuel cells using modified W03 nano-sized carbon paper electrode as anode compared with pure carbon paper electrode and modified W03 nano-particle carbon paper electrode. Microbial fuel cells exhibit more stable performance. This work shows that W03 nanorods have a wide range of applications in the field of bioelectrochemistry as novel anti-biofouling materials.
3. It has been shown that the modification of carboxyl terminal alkanethiol monolayer on gold electrode by self-assembly method can effectively improve the electron transfer between EAB and electrode surface, but the enhancement mechanism is still difficult to clarify. Au-COOH and Au-NH2 were obtained. The electrochemical performance of the three electrodes and the interaction between the electrode surface and bacteria were compared in the microbial electrolytic cell (MEC) system using Geobacter sulfurreducens DL-1 as anode and Au-COOH, Au-NH2 and Au as anode respectively. The results show that Au-NH2 has the best electrochemical performance. In MEC system, Au-COOH produces a higher current density than Au. The Au-COOH surface of Au-NH2 forms a denser biofilm than Au surface, whereas the biofilm formed on the surface is thicker than Au-NH2 surface. This work shows that carboxyl and amino groups can improve the performance of electrodes by accelerating the direct EET between EAB and electrodes. 4. The need for clean energy such as water photolysis to produce hydrogen promotes the rapid development of efficient photocatalytic systems.
A low-cost, easy-to-prepare and environmentally friendly visible-light photocatalytic system for hydrogen production from water by photolysis is reported. The system consists of aqueous triethanolamine solutions of oxanthracene dyes and inorganic Ni (II) or Co (II) salts. The efficiency and stability of hydrogen production can be effectively improved by adding 2-mercaptoethanol as a surfactant. The results of transmission electron microscopy and electrocatalytic hydrogen production showed that the catalytic center of the system was in-situ Ni-based or Co-based nanoparticles.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:O641;TB383.1

【共引文獻】

相關(guān)期刊論文 前10條

1 劉建伯;李金成;孫娜;;新型膜生物反應(yīng)器處理印染廢水的研究[J];環(huán)境科學與管理;2010年02期

2 雷_";仝攀瑞;陳方方;;印染廢水的厭氧(兼氧)生物降解研究進展[J];環(huán)境科學與管理;2010年11期

3 李克斌;趙鋒;魏紅;張濤;王勤勤;;磷鎢酸均相光催化還原降解水中偶氮染料酸性大紅3R[J];高等學;瘜W學報;2011年08期

4 鄭慧;王興祖;孫德智;;厭氧光生物轉(zhuǎn)盤-好氧生物膜處理偶氮染料廢水[J];工業(yè)水處理;2009年01期

5 彭紹琴;劉曉燕;丁敏;李越湘;;復(fù)合光催化劑CdS-Pt/TiO_2制備及可見光光解海水制氫性能[J];分子催化;2013年05期

6 劉建敏;盧志凱;宰學榮;付玉彬;;低溫對海泥發(fā)電性能的影響[J];材料開發(fā)與應(yīng)用;2013年06期

7 成榮敏;李娜;詹從紅;;共存犧牲劑對染料敏化TiO_2納米晶體系電子傳輸?shù)挠绊慬J];高等學;瘜W學報;2014年02期

8 孫彩玉;邸雪穎;李永峰;謝靜怡;趙津竺;;微生物燃料電池系統(tǒng)中氧化還原介體的研究[J];安徽農(nóng)業(yè)科學;2013年29期

9 黃素芳;;金屬有機配合物在光解水制氫體系中的應(yīng)用[J];廣東化工;2014年08期

10 謝珊;歐陽科;丘露;廖貝嫻;陳哲;王倩穎;;微生物燃料電池中碳材料改性陽極和碳基復(fù)合材料陽極的最新研究進展[J];廣東化工;2014年10期

相關(guān)博士學位論文 前10條

1 高霏;二硝基二甲苯污染土壤和地下水的修復(fù)實驗研究[D];中國地質(zhì)大學(北京);2010年

2 虞磊;高效厭氧處理偶氮染料廢水系統(tǒng)和脫色機理研究[D];中國科學技術(shù)大學;2011年

3 徐功娣;序批式雙外循環(huán)生物流化床特性及應(yīng)用研究[D];上海大學;2006年

4 Salah Uddin;[D];大連理工大學;2008年

5 劉友勛;耐堿真菌Myrothecium sp.IMER1對染料脫色的機理研究[D];華中科技大學;2008年

6 裴福云;石墨烯/二氧化鈦雜化材料的制備及其催化的光解水制氫[D];鄭州大學;2013年

7 柴波;可見光響應(yīng)催化材料的制備及其光催化產(chǎn)氫性能研究[D];武漢大學;2012年

8 李朋娜;新型鐵基材料的合成、表征及其性能研究[D];華中師范大學;2013年

9 梁可心;改性TiO_2納米管陣列光陽極裂解水制氫的性能研究[D];華北電力大學;2013年

10 張葉臻;新型石墨紙和石墨烯在微生物燃料電池中的應(yīng)用研究[D];華南理工大學;2013年

,

本文編號:2191694

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/2191694.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3994f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com