負(fù)載不同形貌鈀納米粒子催化劑的制備及催化Suzuki偶聯(lián)反應(yīng)的研究
本文選題:鈀 + 納米粒子; 參考:《中南民族大學(xué)》2015年碩士論文
【摘要】:鈀負(fù)載型催化劑用于催化碳-碳鍵之間的偶聯(lián)反應(yīng),此反應(yīng)是現(xiàn)代合成反應(yīng)中重要的反應(yīng)之一,在各種化合物的合成中得到廣泛應(yīng)用。其中類似的偶聯(lián)反應(yīng)包括Stille偶聯(lián)反應(yīng)、Heck偶聯(lián)反應(yīng)和Suzuki偶聯(lián)反應(yīng)等。Suzuki偶聯(lián)反應(yīng)已成為制備聯(lián)苯類化合物最直接有效的方法。此反應(yīng)是在有機(jī)溶劑中,由各種配體鈀進(jìn)行催化反應(yīng)。Suzuki偶聯(lián)反應(yīng)在工業(yè)生產(chǎn)中有很多優(yōu)點,比如操作簡單,原料廣泛易得,產(chǎn)量高。但是有許多文獻(xiàn)報道鈀高效催化碳-碳偶聯(lián)反應(yīng)具有單一的合成方法,原料較貴,反應(yīng)后產(chǎn)物很難回收再利用。近年來的熱點是研究活性高、選擇性高的鈀催化劑在石油化工中的應(yīng)用。Suzuki反應(yīng)目前主要應(yīng)用到醫(yī)藥生產(chǎn)、功能高分子材料及液晶材料的合成中。大多數(shù)報道的 Suzuki反應(yīng)都是用芳基溴化物、芳基碘化物或者是芳基氯化物進(jìn)行合成反應(yīng)的,F(xiàn)階段,大部分催化劑都是將鈀負(fù)載到配體上合成均相催化劑,雖然均相催化劑催化的效果好,但是反應(yīng)之后很難進(jìn)行回收再利用,從而浪費金屬鈀,污染環(huán)境特別是水污染,使得成本增加。所以設(shè)計合成出可回收可再利用的負(fù)載型鈀催化劑,是近幾年Suzuki偶聯(lián)反應(yīng)的主要研究方向。納米粒子的尺寸、組成及結(jié)晶度、分散性及形貌等會影響自身的催化活性和選擇性能。形貌的不同是與頂角和邊上的原子比例不同有關(guān),其導(dǎo)致了鈀納米粒子的選擇性能和催化性能的不同,從而這引起了人們的極大關(guān)注。催化的研究顯示,金屬納米粒子的活性與形狀和粒徑大小有關(guān)。具有不同形貌的鈀催化劑,對催化C-C偶聯(lián)的反應(yīng)的選擇性和活性不同。載體類型因其結(jié)構(gòu)組成和性質(zhì)的不同對催化劑性能的也有明顯的影響。就其而言,載體具有相連通的孔結(jié)構(gòu),有利于傳質(zhì),高比表面積和孔隙率則提供足夠的負(fù)載量和傳質(zhì)面積,通過活化引入功能基團(tuán)可與金屬形成強(qiáng)化學(xué)鍵。本論文制備不同形貌的鈀納米粒子,并用二氧化鈦負(fù)載,對鈀納米粒子和負(fù)載鈀催化劑其進(jìn)行TEM、XRD、XPS表征。催化間溴甲苯與苯硼酸的Suzuki偶聯(lián)反應(yīng),通過產(chǎn)率的變化確定其最佳溫度、時間。以PVP為保護(hù)劑,氯化鈀為鈀源,以NaBH4為還原劑,苯甲醇為溶劑在室溫下反應(yīng)5 min制得絨球狀Pd納米粒子。改變溫度與時間,同樣的保護(hù)劑和前驅(qū)體,以甲酸銨為還原劑,二次蒸餾水作溶劑獲得類球形鈀納米粒子。同樣以三縮四乙二醇為還原劑,乙醇為溶劑獲得二十面體鈀納米粒子。并對鈀納米粒子進(jìn)行TEM、XRD、XPS表征,觀察其形態(tài)、計算粒徑大小。絨球狀納米粒子粒徑最大,為自組裝體。在所制備的不同形貌的鈀溶液中加入二氧化鈦金屬氧化物,在室溫下攪拌24 h,使其能夠充分吸附鈀納米粒子。設(shè)置溫度25°C,真空旋干,冷卻至室溫,真空干燥。并對負(fù)載不同形貌的鈀進(jìn)行TEM、XRD表征,觀察到在二氧化鈦載體上均負(fù)載了鈀納米粒子,并觀察到二氧化鈦載體上的鈀納米粒子形貌由于在旋干過程中受溫度和溶劑去除的影響使得形貌發(fā)生了一些改變,都趨于各向同性。并用電感耦合等離子體(ICP)發(fā)射光譜法來測試催化劑中的鈀的含量,其中絨球狀鈀納米粒子中的含量最多。以碳酸鉀為堿試劑,負(fù)載不同形貌的鈀納米粒子作為催化劑,以DMF水溶液(DMF:H2O=1:1)為溶劑在一定溫度下催化間溴甲苯與苯硼酸反應(yīng)一定時間。設(shè)置在不同溫度的催化反應(yīng),通過產(chǎn)率來確定其最佳溫度。同樣方法設(shè)置不同反應(yīng)時間確定合適條件。其負(fù)載二十面體鈀納米粒子催化劑催化反應(yīng)的最佳溫度和時間分別為110°C、2 h。
[Abstract]:Palladium supported catalysts are used to catalyze the coupling reaction between carbon and carbon bonds. This reaction is one of the most important reactions in modern synthetic reactions and is widely used in the synthesis of various compounds. The similar coupling reactions include Stille coupling reaction, Heck coupling reaction and Suzuki coupling reaction, which have become a preparation combination. The most direct and effective method of benzene compounds in organic solvents, the catalytic reaction of various ligands palladium in the catalytic reaction.Suzuki coupling reaction has many advantages in industrial production, such as simple operation, widely available raw materials and high yield. But there are many reports that palladium has a single synthesis method for high efficiency carbon carbon coupling reaction. The raw materials are more expensive and the reaction products are difficult to recycle and reuse. In recent years, the hot spot is to study the application of high active and selective palladium catalysts in the petrochemical industry. The.Suzuki reaction is mainly used in the synthesis of pharmaceutical production, functional polymer materials and liquid crystal materials. Most of the Suzuki reactions in the reports are aryl bromides and aryl groups. Iodide or aryl chloride is synthesized. At the present stage, most of the catalysts are supported on the ligand to synthesize the homogeneous catalyst. Although all the catalysts have good catalytic effect, it is difficult to recycle and reuse them after the reaction, so that the metal palladium is wasted and the environment especially water pollution is polluted, so the cost is increased. The design and synthesis of recoverable and reusable palladium catalyst is the main research direction of Suzuki coupling reaction in recent years. The size, composition and crystallinity of the nanoparticles, dispersion and morphology will affect the catalytic activity and selective properties of the nanoparticles. The difference of the morphology is related to the atomic ratio at the top angle and on the edge. The selection and catalytic properties of palladium nanoparticles are different, which have aroused great concern. The catalytic study shows that the activity of the metal nanoparticles is related to the shape and size of the particles. The palladium catalysts with different morphologies have different selectivity and activity for the reaction of C-C coupling. The difference in properties also has an obvious effect on the performance of the catalyst. In its case, the carrier has a connected pore structure, which is beneficial to mass transfer. The high specific surface area and porosity provide enough load and mass transfer area, and the metal can form a strengthening bond with the metal by activating the functional group. The palladium nanoparticles with different morphologies are prepared in this paper. The palladium nanoparticles and the supported palladium catalysts were characterized by TEM, XRD, and XPS, which catalyze the Suzuki coupling reaction between bromine toluene and benzyl boric acid. The optimum temperature and time were determined by the change of yield, with PVP as the protectant, palladium chloride as the palladium source, NaBH4 as the reductant, and benzyl alcohol as the solvent at room temperature for 5 min Ball like Pd nanoparticles. Change the temperature and time, the same protectant and precursor, use ammonium formate as reducing agent, two distilled water as solvent to obtain spherical palladium nanoparticles. The same as three shrinkage four glycol as reducing agent and ethanol as solvent to obtain twenty surface palladium nanoparticles. And the palladium nanoparticles were characterized by TEM, XRD, and XPS. The particle size of the particle size is the largest. The particle size of the ball like nanoparticles is the largest, which is the self assembly. The titanium dioxide metal oxide is added to the palladium solution with different morphologies. At room temperature, 24 h is stirred, and the palladium nanoparticles can be fully adsorbed. The temperature is 25 degree C, vacuum drying, cooling to room temperature, vacuum drying. The palladium in the appearance was characterized by TEM and XRD. It was observed that palladium nanoparticles were loaded on the titanium dioxide carrier, and the morphology of the palladium nanoparticles on the titanium dioxide carrier was observed to be isotropic because of the influence of temperature and solvent removal during the spin drying process, and the morphology of the palladium nanoparticles tended to be isotropic and was induced by inductively coupled plasma (ICP). The content of palladium in the catalyst is measured by the method of emission spectrometry, in which the content of palladium nanoparticles is the most. With the potassium carbonate as the alkali reagent, the palladium nanoparticles with different morphologies are supported and the DMF aqueous solution (DMF:H2O=1:1) is used as the solvent at a certain temperature to catalyze the reaction between bromo methylene and phthalic acid at a certain temperature. The optimum temperature of the catalytic reaction is determined by the yield. The same method is used to determine the appropriate conditions. The optimum temperature and time for the catalytic reaction of the supported twenty surface palladium nanoparticles are 110 C, 2 h., respectively.
【學(xué)位授予單位】:中南民族大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O643.36;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張智;張廣鑫;李淑輝;劉傳玉;白雪峰;趙毅磊;王潔瑩;;鈀催化Suzuki偶聯(lián)反應(yīng)的研究進(jìn)展[J];化學(xué)與黏合;2014年02期
2 史振朋;王海洋;李佳哲;白雪峰;;負(fù)載鈀催化Suzuki偶聯(lián)反應(yīng)的研究進(jìn)展[J];化學(xué)與黏合;2014年04期
3 李佳哲;王海洋;史振鵬;白雪峰;;碳材料負(fù)載鈀催化Suzuki偶聯(lián)反應(yīng)的研究進(jìn)展[J];化學(xué)與黏合;2014年03期
4 秦宏宇;劉雷芳;;聚乙二醇中氯苯的Suzuki偶聯(lián)反應(yīng)研究[J];化學(xué)試劑;2014年09期
5 高豐琴;何漢江;郭強(qiáng);王小明;臧超;;Suzuki偶聯(lián)反應(yīng)合成4'-乙基-2,3-二氟-1,1'-聯(lián)苯[J];化學(xué)研究與應(yīng)用;2013年01期
6 安忠維,陳新兵;鈀/碳催化Suzuki偶聯(lián)反應(yīng)合成4,4-雙戊基環(huán)己基聯(lián)苯[J];精細(xì)石油化工;2000年06期
7 董兆恒;王建文;高仁孝;武生喜;馮星;楊東杰;;Suzuki偶聯(lián)反應(yīng)合成三聯(lián)苯中的副產(chǎn)物研究[J];合成化學(xué);2007年06期
8 劉亞偉;牛芳芳;牛憨笨;賀才杰;曾鵬舉;;表面活性劑參與的四苯硼鈉與芳鹵Suzuki偶聯(lián)反應(yīng)[J];化學(xué)試劑;2011年01期
9 高豐琴;何漢江;王小明;郭強(qiáng);;Pd(PPh_3)_4催化Suzuki偶聯(lián)反應(yīng)合成4-溴-2-氟-聯(lián)苯[J];精細(xì)化工;2012年11期
10 李永清;曹育才;周慧;;Pd(dppf)Cl_2催化Suzuki偶聯(lián)反應(yīng)合成4-(4-叔丁基苯基)-6-甲基-1,2,3,5-四氫-s-引達(dá)省[J];精細(xì)化工;2014年02期
相關(guān)會議論文 前5條
1 張展;冀海英;付賢磊;楊榆;王麗冰;高國華;;高位阻Suzuki偶聯(lián)反應(yīng)的研究[A];中國化學(xué)會第26屆學(xué)術(shù)年會有機(jī)化學(xué)分會場論文集[C];2008年
2 項吉;李鵬;朱滿洲;;鈀鎳雙金屬催化Suzuki偶聯(lián)反應(yīng)[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第34分會:納米催化[C];2014年
3 李春玉;榮暢;張焱;;Pb(PPh_3)_4催化Suzuki偶聯(lián)反應(yīng)合成3-芳基-2,5-二甲基吡嗪衍生物[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第07分會:有機(jī)化學(xué)[C];2014年
4 肖德寶;劉麗麗;李妍;;基于苯環(huán)的二維共價有機(jī)框架的制備及性能研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第15分會場摘要集[C];2012年
5 肖德寶;劉麗麗;李妍;;基于苯環(huán)的二維共價有機(jī)框架的制備及性能研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第11分會場摘要集[C];2012年
相關(guān)博士學(xué)位論文 前2條
1 張紅萍;鈀催化鄰炔基疊氮環(huán)化反應(yīng)和Suzuki偶聯(lián)反應(yīng)研究[D];湖南師范大學(xué);2011年
2 周浩;鹵代芳烴的Heck和Suzuki偶聯(lián)反應(yīng)研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉萌萌;磁性空心鈀催化劑的制備及其在Suzuki偶聯(lián)反應(yīng)中應(yīng)用的研究[D];蘭州大學(xué);2016年
2 李楨;鎳—咪唑并吡啶化合物的合成及其催化芳基磺酸酯的Suzuki偶聯(lián)反應(yīng)[D];鄭州大學(xué);2016年
3 谷寧寧;鈀催化Suzuki偶聯(lián)反應(yīng)合成多芳烴化合物的研究[D];石河子大學(xué);2016年
4 劉洋;等離子體法制備Pd/C催化劑及催化Suzuki偶聯(lián)反應(yīng)[D];黑龍江大學(xué);2016年
5 任寧寧;負(fù)載不同形貌鈀納米粒子催化劑的制備及催化Suzuki偶聯(lián)反應(yīng)的研究[D];中南民族大學(xué);2015年
6 海國良;微孔聚合物負(fù)載鈀催化劑的制備及其在Suzuki偶聯(lián)反應(yīng)中的催化性能研究[D];華中科技大學(xué);2013年
7 湯瀟;含氮非膦二齒鈀配合物的合成及其催化Suzuki偶聯(lián)反應(yīng)的研究[D];廣東藥學(xué)院;2014年
8 張虎;應(yīng)用Suzuki偶聯(lián)反應(yīng)合成3-芳基-β-內(nèi)酰胺類化合物[D];吉林大學(xué);2009年
9 黃素玉;吡啶吡唑類鈀(Ⅱ)配合物的合成及其催化Suzuki偶聯(lián)反應(yīng)的研究[D];廣西民族大學(xué);2013年
10 王震;大位阻N雜環(huán)卡賓納米磁性鈀催化劑制備及其在Suzuki偶聯(lián)反應(yīng)中的應(yīng)用[D];華僑大學(xué);2014年
,本文編號:1993858
本文鏈接:http://www.sikaile.net/kejilunwen/cailiaohuaxuelunwen/1993858.html