基于RBF神經(jīng)網(wǎng)絡的瓦斯測值分析及預測應用研究
本文選題:礦井瓦斯 + RBF神經(jīng)網(wǎng)絡 ; 參考:《西安科技大學》2013年碩士論文
【摘要】:瓦斯災害作為我國煤礦的主要災害之一,長期困擾著煤礦的安全生產(chǎn),本文通過對瓦斯預測方法、預警技術調(diào)研分析的基礎上,以反應瓦斯涌出特征的礦井瓦斯實時監(jiān)測數(shù)據(jù)、防突監(jiān)測數(shù)據(jù)為研究對象,通過將瓦斯涌出顯現(xiàn)出的瓦斯?jié)舛茸兓卣髋c瓦斯實時監(jiān)測數(shù)據(jù)與防突監(jiān)測數(shù)據(jù)之間的關聯(lián)特征,用神經(jīng)網(wǎng)絡方法來描述,進行瓦斯?jié)舛阮A測預警與煤與瓦斯突出危險性預測預警的研究,主要研究工作如下: 首先介紹了徑向基函數(shù)神經(jīng)網(wǎng)絡(RBFNN)方法的基本理論及其預測方法,在此基礎上,,分析了其應用于煤礦實際監(jiān)測數(shù)據(jù)分析的可行性,以及應用于礦井瓦斯預測的基本原理。 其次,針對礦井實際監(jiān)測數(shù)據(jù)的特征,使用插值法對實測數(shù)據(jù)進行預處理,建立基于綜采工作面瓦斯實時監(jiān)測數(shù)據(jù)處理的綜采工作面瓦斯?jié)舛阮A測預警模型,實現(xiàn)了回采工作面瓦斯?jié)舛鹊膶崟r預測預警。 再次,針對檢/監(jiān)測數(shù)據(jù),提取瓦斯實時監(jiān)測數(shù)據(jù)的統(tǒng)計特征參數(shù),建立了掘進工作面煤與瓦斯突出危險性預測預警模型,基于檢/監(jiān)測數(shù)據(jù)融合分析,實現(xiàn)煤與瓦斯突出危險性預測預警。 最后,將預測預警模型應用于實例礦井進行現(xiàn)場分析驗證,分析結果表明:預測的誤差較小,預測結果較準確,從而保證了預警分析的可靠性。 本文研究的以瓦斯檢/監(jiān)測數(shù)據(jù)處理為手段的瓦斯預測預警技術,針對現(xiàn)場實測數(shù)據(jù)的應用分析,表現(xiàn)出了良好的適用性,可作為擴展煤礦安全監(jiān)測監(jiān)控系統(tǒng)功能的有效手段,具有一定的實際應用價值。
[Abstract]:Gas disaster, as one of the main disasters in coal mine in China, has been puzzling the safety production of coal mine for a long time. Based on the investigation and analysis of gas prediction method and early warning technology, the real-time monitoring data of gas emission in coal mine are used to reflect the characteristics of gas emission. The outburst prevention monitoring data is used as the research object. The relationship between the gas concentration variation characteristics and the real-time gas monitoring data and the anti-outburst monitoring data is described by the neural network method. The main research work is as follows: firstly, the basic theory and prediction method of radial basis function neural network (RBFNN) are introduced. The feasibility of its application in coal mine monitoring data analysis and the basic principle of mine gas prediction are analyzed. Secondly, according to the characteristics of actual mine monitoring data, the interpolation method is used to preprocess the measured data, and a prediction and warning model of gas concentration in fully mechanized coal mining face based on real-time monitoring data processing of fully mechanized mining face is established. The real-time prediction and early warning of gas concentration in mining face are realized. Thirdly, aiming at the inspection / monitoring data, the statistical characteristic parameters of the real-time gas monitoring data are extracted, and the prediction and early warning model of coal and gas outburst risk in the tunneling face is established, which is based on the fusion analysis of the inspection / monitoring data. Coal and gas outburst risk prediction and early warning. Finally, the prediction and early warning model is applied to the field analysis and verification of an example mine. The analysis results show that the prediction error is small and the prediction result is more accurate, thus ensuring the reliability of the early warning analysis. The gas prediction and early warning technology based on gas inspection / monitoring data processing is studied in this paper. According to the application and analysis of field measured data, it shows good applicability and can be used as an effective means to expand the function of coal mine safety monitoring and monitoring system. It has certain practical application value.
【學位授予單位】:西安科技大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TD712;TP183
【參考文獻】
相關期刊論文 前10條
1 嚴琳;;我國煤礦瓦斯事故淺析[J];安全;2007年03期
2 閻馨;付華;;基于案例推理和數(shù)據(jù)融合的煤與瓦斯突出預測[J];東南大學學報(自然科學版);2011年S1期
3 張月琴;曾倩倩;;基于商空間的煤礦瓦斯?jié)舛阮A測研究[J];電腦開發(fā)與應用;2011年04期
4 王靜;田麗;蔣慧;;基于遺傳算法的RBF網(wǎng)絡的短期電力負荷預測[J];電子技術;2010年04期
5 余健;郭平;;基于RBF網(wǎng)絡的金融時間序列預測[J];湖南工程學院學報(自然科學版);2007年04期
6 吳麗麗;;RBF神經(jīng)網(wǎng)絡在有效灌溉面積預測中的應用[J];甘肅科技;2009年24期
7 陳祖云;張桂珍;鄔長福;楊勝強;;基于支持向量機的煤與瓦斯突出預測研究[J];工業(yè)安全與環(huán)保;2010年05期
8 趙金憲;于光華;;瓦斯?jié)舛阮A測的混沌時序RBF神經(jīng)網(wǎng)絡模型[J];黑龍江科技學院學報;2010年02期
9 劉勇;江成玉;;基于BP神經(jīng)網(wǎng)絡的煤與瓦斯突出危險性的預測研究[J];潔凈煤技術;2011年01期
10 朱大奇;人工神經(jīng)網(wǎng)絡研究現(xiàn)狀及其展望[J];江南大學學報;2004年01期
本文編號:2108595
本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/2108595.html